• Ladi Reshma M.Tech Biotechnology, Department of Chemical Engineering, AU College of Engineering (A), Andhra University, Visakhapatnam, India
  • V Sridevi Professor, Department of Chemical Engineering, Andhra University, Vishakhapatnam-530003. India.
  • M N N Sai Rachana M. Tech Biotechnology, Department of Chemical Engineering, AU College of Engineering (A), Andhra University, Visakhapatnam, India
  • J Akhila M.Tech Biotechnology,Department of Chemical Engineering, Andhra University,Vishakhapatnam-530003. India.
  • M Yamini M. Tech Biotechnology, Department of Chemical Engineering, AU College of Engineering (A), Andhra University, Visakhapatnam, India
  • Katru Ramya Sugandhi M. Tech Biotechnology, Department of Chemical Engineering, AU College of Engineering (A), Andhra University, Visakhapatnam, India
  • Husam Talib Hamzah Ph.D. Scholar, Department of Chemical Engineering, Andhra University,Vishakhapatnam-530003, India
  • R. Sri Harsha M. Tech Biotechnology, Department of Chemical Engineering, AU College of Engineering (A), Andhra University, Visakhapatnam, India



Biodegradation, Phenol, Mechanism, Immobilization, Modelling, Kinetics, Mass Transfer

Abstract [English]

Harmful pollutants like phenol and its derivatives are found in wastewater from a wide range of industries, including oil refining, medicines, coal conversion, chemistry, and petrochemistry. The high concentration, high toxicity, and difficult-to-degrade characteristics of phenols in wastewater pose a serious threat to the environment and to human health. By employing different strains of microorganisms and biocatalysts to create biodegradation procedures of diverse pollutants and a wide spectrum of hazardous compounds, biotechnology has successfully addressed significant environmental challenges. Among various phenols removal techniques, biodegradation is both economical and environmentally friendly. During the study of microbial degradation processes, there is a great deal of interest in the potential for mathematical modelling to forecast microbial growth and degrade harmful or inhibiting environmental pollutants at variable quantities. Such mathematical models are frequently created using aromatic compounds like phenol. The review discusses the following topics: kinetics, modelling, and mass transfer; future scope and directions; diverse microorganisms, bioreactors, the metabolic pathway of phenol, influencing factors, and recent advancements in biological therapy.


Download data is not yet available.


Agarry, S. E., Durojaiye, A. O., and Solomon, B. O. (2008). Microbial Degradation Of Phenols: A Review. International Journal Of Environment and Pollution, 32(1), 12–28. Https://Doi.Org/10.1504/Ijep.2008.016895 DOI:

Aisami, A., Yasid, N. A., And Shukor, M. Y. A. (2020). Optimization of Cultural and Physical Parameters for Phenol Biodegradation by Newly Identified Pseudomonas Sp. Aq5-04. Journal of Tropical Life Science, 10(3), 223–233. Https://Doi.Org/10.11594/Jtls.10.03.06 DOI:

Al-Khalid, T., and El-Naas, M. H. (2012). Aerobic Biodegradation of Phenols: A Comprehensive Review. Critical Reviews In Environmental Science and Technology, 42(16), 1631–1690. Https://Doi.Org/10.1080/10643389.2011.569872 DOI:

Alqahtani, A., Tongkao-On, W., Li, K. M., Razmovski-Naumovski, V., Chan, K., And Li, G. Q. (2015). Seasonal Variation Of Triterpenes and Phenolic Compounds In Australian Centella Asiatica (L.) Urb. Phytochemical Analysis, 26(6), 436–443. Https://Doi.Org/10.1002/Pca.2578 DOI:

Annadurai, G., Juang, R. S., and Lee, D. J. (2002). Microbiological Degradation of Phenol Using Mixed Liquors of Pseudomonas Putida and Activated Sludge. Waste Management, 22(7), 703–710. Https://Doi.Org/10.1016/S0956-053x(02)00050-8 DOI:

Annadurai, G., Mathalai Balan, S., and Murugesan, T. (1999). Box-Behnken Design In The Development Of Optimized Complex Medium For Phenol Degradation Using Pseudomonas Putida (Nicm 2174). Bioprocess Engineering, 21(5), 415–421. Https://Doi.Org/10.1007/Pl00009082 DOI:

Armenante, P. M., Fava, F., and Kafkewitz, D. (1995). Effect Of Yeast Extract on Growth Kinetics During Aerobic Biodegradation of Chlorobenzoic Acids. Biotechnology and Bioengineering, 47(2), 227–233. Https://Doi.Org/10.1002/Bit.260470214 DOI:

Bhatia, S. K., Joo, H. S., and Yang, Y. H. (2018). Biowaste-To-Bioenergy Using Biological Methods – A Mini-Review. Energy Conversion And Management, 177, 640–660. Https://Doi.Org/10.1016/J.Enconman.2018.09.090 DOI:

Coskun, O. (2016). Separation Techniques: Chromatography. Northern Clinics of Istanbul, 3(2), 156–160. Https://Doi.Org/10.14744/Nci.2016.32757 DOI:

Da Silva Siqueira, E. M., Félix-Silva, J., De Araújo, L. M., Fernandes, J. M., Cabral, B., Gomes, J. A., De Araújo Roque, A., Tomaz, J. C., Lopes, N. P., De Freitas Fernandes-Pedrosa, M., Giordani, R. B., and Zucolotto, S. M. (2016). Spondias Tuberosa (Anacardiaceae) Leaves: Profiling Phenolic Compounds By Hplc-Dad And Lc-Ms/Ms And In Vivo Anti-Inflammatory Activity. Biomedical Chromatography, 30(10), 1656–1665. Https://Doi.Org/10.1002/Bmc.3738 DOI:

Duan, W., Meng, F., Cui, H., Lin, Y., Wang, G., And Wu, J. (2018). Ecotoxicity Of Phenol And Cresols To Aquatic Organisms: A Review. Ecotoxicology And Environmental Safety, 157, 441–456. Https://Doi.Org/10.1016/J.Ecoenv.2018.03.089 DOI:

Evans, W. C. (1947). Oxidation of Phenol and Benzoic Acid by Some Soil Bacteria. Biochemical Journal, 41(3), 373–382. Https://Doi.Org/10.1042/Bj0410373 DOI:

Fan, J., Fan, Y., Pei, Y., Wu, K., Wang, J., and Fan, M. (2008). Solvent Extraction of Selected Endocrine-Disrupting Phenols Using Ionic Liquids. Separation and Purification Technology, 61(3), 324–331. Https://Doi.Org/10.1016/J.Seppur.2007.11.005 DOI:

González, G., Herrera, G., García, M. T., and Peña, M. (2001). Biodegradation of Phenolic Industrial Wastewater in a Fluidized Bed Bioreactor With Immobilized Cells of Pseudomonas Putida. Bioresource Technology, 80(2), 137–142. Https://Doi.Org/10.1016/S0960-8524(01)00076-1 DOI:

Harwood, C. S., and Parales, R. E. (1996). The Beta-Ketoadipate Pathway and the Biology of Self-Identity. Annual Review of Microbiology, 50, 553–590. Https://Doi.Org/10.1146/Annurev.Micro.50.1.553 DOI:

Kazemi, P., Peydayesh, M., Bandegi, A., Mohammadi, T., and Bakhtiari, O. (2014). Stability and Extraction Study of Phenolic Wastewater Treatment by Supported Liquid Membrane Using Tributyl Phosphate and Sesame Oil as Liquid Membrane. Chemical Engineering Research and Design, 92(2), 375–383. Https://Doi.Org/10.1016/J.Cherd.2013.07.023 DOI:

Kilby, B. A. (1948). The Bacterial Oxidation of Phenol to Beta-Ketoadipic Acid. Biochemical Journal, 43(1), V–V.

Kuc, M. E., Azerrad, S., Menashe, O., And Kurzbaum, E. (2022). Efficient Biodegradation Of Phenol At High Concentrations By Acinetobacter Biofilm At Extremely Short Hydraulic Retention Times. Journal Of Water Process Engineering, 47, 102781. Https://Doi.Org/10.1016/J.Jwpe.2022.102781 DOI:

Letelier, M. E., Rodríguez-Rojas, C., Sánchez-Jofré, S., and Aracena-Parks, P. (2011). Surfactant and Antioxidant Properties of an Extract From Chenopodium Quinoa Willd Seed Coats. Journal of Cereal Science, 53(2), 239–243. Https://Doi.Org/10.1016/J.Jcs.2010.12.006 DOI:

Mocan, A., Crișan, G., Vlase, L., Crișan, O., Vodnar, D. C., Raita, O., Gheldiu, A. M., Toiu, A., Oprean, R., and Tilea, I. (2014). Comparative Studies on Polyphenolic Composition, Antioxidant and Antimicrobial Activities of Schisandra Chinensis Leaves and Fruits. Molecules, 19(9), 15162–15179. Https://Doi.Org/10.3390/Molecules190915162 DOI:

Naczk, M., and Shahidi, F. (2006). Phenolics In Cereals, Fruits And Vegetables: Occurrence, Extraction And Analysis. Journal of Pharmaceutical and Biomedical Analysis, 41(5), 1523–1542. Https://Doi.Org/10.1016/J.Jpba.2006.04.002 DOI:

Pakuła, A., Bieszkiewicz. E., Boszczyk-Maleszak, H., and Mycielski, R. (1999). Biodegradation Of Phenol By Bacterial Strains From Petroleum-Refining Wastewater Purification Plant. Europepmc.Org.

Patil, S. S. (2014). Biodegradation Study Of Phenol By Burkholderia Sp. Ps3 And Bacillus Pumilus Os1 Isolated From Contaminated Soil.

Pouraboli, I., Nazari, S., Sabet, N., Sharififar, F., and Jafari, M. (2016). Antidiabetic, Antioxidant, and Antilipid Peroxidative Activities Of Dracocephalum Polychaetum Shoot Extract In Streptozotocin-Induced Diabetic Rats: In Vivo and in Vitro Studies. Pharmaceutical Biology, 54(2), 272–278. Https://Doi.Org/10.3109/13880209.2015.1033561 DOI:

Ratkowsky, D. A., Olley, J., Mcmeekin, T. A., And Ball, A. (1982). Relationship Between Temperature and Growth Rate Of Bacterial Cultures. Journal of Bacteriology, 149(1), 1–5. Https://Doi.Org/10.1128/Jb.149.1.1-5.1982 DOI:

Rejczak, T., and Tuzimski, T. (2017). Application of High-Performance Liquid Chromatography With Diode Array Detector for Simultaneous Determination of 11 Synthetic Dyes In Selected Beverages and Foodstuffs. Food Analytical Methods, 10(11), 3572–3588. Https://Doi.Org/10.1007/S12161-017-0905-3 DOI:

Rozich, A. F., and Colvin, R. J. (1986). Effects Of Glucose On Phenol Biodegradation by Heterogeneous Populations. Biotechnology And Bioengineering, 28(7), 965–971. Https://Doi.Org/10.1002/Bit.260280706 DOI:

Sankhalkar, S., And Vernekar, V. (2016). Quantitative And Qualitative Analysis Of Phenolic and Flavonoid Content In Moringa Oleifera Lam And Ocimum Tenuiflorum L. Pharmacognosy Research, 8(1), 16–21. Https://Doi.Org/10.4103/0974-8490.171095 DOI:

Satish, K., Neeraj, Viraj, K. M., and Santosh, K. K. (2018). Biodegradation Of Phenol By Free And Immobilized Candida Tropicalis Npd1401. African Journal Of Biotechnology, 17(3), 57–64. Https://Doi.Org/10.5897/Ajb2017.15906 DOI:

Sun, J., Mu, Q., Kimura, H., Murugadoss, V., He, M., Du, W., And Hou, C. (2022). Oxidative Degradation Of Phenols And Substituted Phenols In The Water And Atmosphere: A Review. Advanced Composites And Hybrid Materials, 5(2), 627–640. Https://Doi.Org/10.1007/S42114-022-00435-0 DOI:

Touliabah, H. E. S., El-Sheekh, M. M., Ismail, M. M., and El-Kassas, H. (2022). A Review of Microalgae- and Cyanobacteria-Based Biodegradation of Organic Pollutants. Molecules, 27(3, February). Https://Doi.Org/10.3390/Molecules27031141 DOI:

Vaičiulyte, V., Butkienė, R., and Ložiene, K. (2016). Effects of Meteorological Conditions and Plant Growth Stage On the Accumulation of Carvacrol and its Precursors in Thymus Pulegioides. Phytochemistry, 128, 20–26. Https://Doi.Org/10.1016/J.Phytochem.2016.03.018 DOI:

Williams, R. J., and Evans, W. C. (1975). The Metabolism of Benzoate By Moraxella Species Through Anaerobic Nitrate Respiration. Evidence For a Reductive Pathway. Biochemical Journal, 148(1), 1–10. Https://Doi.Org/10.1042/Bj1480001a DOI:

Xiang, Y., Xing, Z., Liu, J., Qin, W., and Huang, X. (2020). Recent Advances In The Biodegradation Of Polychlorinated Biphenyls. World Journal Of Microbiology And Biotechnology, 36(10), 145. Https://Doi.Org/10.1007/S11274-020-02922-2 DOI:




How to Cite

Ladi, R., V, S., Sai Rachana, M. N. N., J, A., M, Y., Sugandhi, K. R. S., Hamzah, H. T., & Sri Harsha, R. (2023). REVIEW ON ADVANCES IN BIODEGRADATION OF PHENOLS: KINETICS, MODELLING AND MASS TRANSFER. International Journal of Research -GRANTHAALAYAH, 11(1), 39–56.

Most read articles by the same author(s)