HALDANE KINETIC STUDY ON BIODEGRADATION OF PHENOL -A COMPREHENSIVE REVIEW

Authors

  • Veluru Sridevi Department of Chemical Engineering, College of Engineering, Andhra University, Visakhapatnam-530003. Andhra Pradesh. India.
  • Husam Talib Hamzah Phd Scholar, Department of Chemical Engineering, College of Engineering, Andhra University, Visakhapatnam-530003. Andhra Pradesh. India. https://orcid.org/0000-0002-6827-2665
  • Nabil Majd Alawi Department of Chemical Engineering, University of Technology, Baghdad, Iraq.
  • D. Divya Teja Department of Chemical Engineering, College of Engineering, Andhra University, Visakhapatnam-530003.Andhra Pradesh. India.
  • Venkata Rao Poiba Department of Chemical Engineering, College of Engineering, Andhra University, Visakhapatnam-530003. Andhra Pradesh. India.
  • Bandi Spandana Department of Chemical Engineering, College of Engineering, Andhra University, Visakhapatnam-530003. Andhra Pradesh. India.
  • Husam Salah Mahdi Department of Computer Science and System Engineering, College of Engineering, Andhra University, Visakhapatnam-530003. Andhra Pradesh. India.

DOI:

https://doi.org/10.29121/granthaalayah.v11.i1.2023.4993

Keywords:

Biodegradation, Growth Kinetics, Phenol, Toxicity, Haldane Model

Abstract [English]

The chemical moreover petroleum industries are responsible for the production of a diverse range of organic contaminants that are extremely hazardous.  As a result, these industries have contributed to the accumulation of damaging impacts on the surrounding environment. These companies' waste water typically contains aromatic organic chemicals, which are notoriously difficult to degrade through natural processes and, as a result, are found to be pervasive in the environment. Being the straightforward units for an extensive variety of organic substances, In industries such as oil refining, production of phenol and the various derivatives of it, pharmaceuticals, productions of resins, textile dyes, paints, disinfectants, petrochemicals, and paper mills, phenol and its derivatives are used, and as a result, The effluents produced by these industries often contain phenol as well as derivatives of phenol. The existence of phenolic compounds in water systems is associated with significant increases in the likelihood of adverse health effects being experienced by both human beings and other organisms.  In light of this, the elimination of such potentially hazardous substances has garnered a significant amount of focus in recent decades.  The removal of phenolic pollutants from aquatic environments by biodegradation is a technique that is both environmentally friendly and economical. For the purpose of optimising procedure process, building bioreactor systems, and scaling up microbial wastewater treatment procedures to fulfil the requirements of the effluent quality standard, having an understanding of the kinetics of microbial growth and biodegradation is absolutely essential. The current study concentrates on a number of different research publications on Haldane kinetic models, which are utilised to Describe the processes involved in the growth of microbes on phenol.


 

Downloads

Download data is not yet available.

Author Biographies

Veluru Sridevi, Department of Chemical Engineering, College of Engineering, Andhra University, Visakhapatnam-530003. Andhra Pradesh. India.

 

 

 

Husam Talib Hamzah, Phd Scholar, Department of Chemical Engineering, College of Engineering, Andhra University, Visakhapatnam-530003. Andhra Pradesh. India.

 

 

Nabil Majd Alawi, Department of Chemical Engineering, University of Technology, Baghdad, Iraq.

 

 

 

D. Divya Teja, Department of Chemical Engineering, College of Engineering, Andhra University, Visakhapatnam-530003.Andhra Pradesh. India.

 

 

 

Venkata Rao Poiba, Department of Chemical Engineering, College of Engineering, Andhra University, Visakhapatnam-530003. Andhra Pradesh. India.

 

 

 

Bandi Spandana, Department of Chemical Engineering, College of Engineering, Andhra University, Visakhapatnam-530003. Andhra Pradesh. India.

 

 

 

Husam Salah Mahdi, Department of Computer Science and System Engineering, College of Engineering, Andhra University, Visakhapatnam-530003. Andhra Pradesh. India.

 

 

 

References

Agarry, S. E., Durojaiye, A. O., Yusuf, R. O., Aremu, M. O., Solomon, B. O., and Mojeed, O. (2008). Biodegradation of Phenol in Refinery Wastewater by Pure Cultures of Pseudomonas Aeruginosa NCIB 950 and Pseudomonas Fluorescence NCIB 3756. Int. J. Environ. Pollut., 32, 3-11. https://doi.org/10.1504/IJEP.2008.016894. DOI: https://doi.org/10.1504/IJEP.2008.016894

Agarry, S. E., Durojaiye, A. O., and Solomon, B. O. (2008). Microbial Degradation of Phenols: A Review. Int. J. Environ. Pollut., 32, 12-28. https://doi.org/10.1504/IJEP.2008.016895. DOI: https://doi.org/10.1504/IJEP.2008.016895

Al-Asoufi, A., Khlaifat, A., Tarawneh, A.A., Alsharafa, K., Al-Limoun, M., and Khleifat, K. (2017). Bacterial Quality of Urinary Tract Infections in Diabetic and Non-Diabetics of the Population of Ma'an Province, Jordan. Pakistan J. Biol. Sci., 20(4), 179-188. https://doi.org/10.3923/pjbs.2017.179.188. DOI: https://doi.org/10.3923/pjbs.2017.179.188

Anurova, M. N., Bakhrushina, E.O., Demina, N.B., and Panteleeva, E.S. (2019). Modern Preservatives of Microbiological Stability. Pharm. Chem. J., 53, 564-571. https://doi.org/10.1007/s11094-019-02038-4. DOI: https://doi.org/10.1007/s11094-019-02038-4

Arutchelvan, V., and Atun, R. C. (2019). Degradation of Phenol, an Innovative Biological Approach. Adv Biotech & Micro., 12(2), 555835. https://doi.org/10.19080/AIBM.2019.12.555835. DOI: https://doi.org/10.19080/AIBM.2019.12.555835

Banerjee, A., and Ghoshal, A.K. (2010). Phenol Degradation by Bacillus Cereus: Pathway and Kinetic Modeling. Bioresour. Technol., 101, 5501-5507. https://doi.org/10.1016/j.biortech.2010.02.018. DOI: https://doi.org/10.1016/j.biortech.2010.02.018

Barik M., Das C.P., Verma A.K., Sahoo S., Sahoo N.K. (2021), Metabolic Profiling of Phenol Biodegradation by an Indigenous Rhodococcuspyridinivorans Strain PDB9T N-1 Isolated from Paper Pulp Wastewater. Int. Biodeterior. Biodegrad., 158, 105168. https://doi.org/10.1016/j.ibiod.2020.105168. DOI: https://doi.org/10.1016/j.ibiod.2020.105168

Bera, S. Roy, A. S., and Mohanty, K. (2017). Biodegradation of Phenol by a Native Mixed Bacterial Culture Isolated from Crude Oil Contaminated Site. International Biodeterioration & Biodegradation, 121, 107-113. https://doi.org/10.1016/j.ibiod.2017.04.002. DOI: https://doi.org/10.1016/j.ibiod.2017.04.002

Bhatt, P., Kumar, M. S., Mudliar, S., and Chakrabarti, T. (2007). Biodegradation of Chlorinated Compounds-A Review. Crit. Rev. Env. Sci. Technol., 37, 165-198. https://doi.org/10.1080/10643380600776130. DOI: https://doi.org/10.1080/10643380600776130

Cetinkaya and Ozdemir (2018). Cetinkaya A.Y., Ozdemir O.K. Phenol Removal from Synthetic Solution Using Low Pressure Membranes Coated with Graphene Oxide and Carbon. Chem. Pap., 72, 327-335. https://doi.org/10.1007/s11696-017-0282-9. DOI: https://doi.org/10.1007/s11696-017-0282-9

Cui, P., Mai, Z., Yang, S., and Qian, Y., (2017). Integrated Treatment Processes for Coalgasification Wastewater with High Concentration of Phenol and Ammonia. J.Cleaner Production , 142, 2218-2226. https://doi.org/10.1016/j.jclepro.2016.11.056. DOI: https://doi.org/10.1016/j.jclepro.2016.11.056

Dash, R. R., Gaur, A., and Balomajumder, C. (2009). Cyanide in Industrial Wastewaters and its Removal: A Review On Biotreatment. J. Hazard. Mater., 163, 1-11. https://doi.org/10.1016/j.jhazmat.2008.06.051. DOI: https://doi.org/10.1016/j.jhazmat.2008.06.051

Duan, W., Meng, F., Cui, H., Lin, Y., Wang, G., Wu, J. (2018). Ecotoxicity of Phenol and Cresols to Aquatic Organisms: A Review. Ecotoxicol. Environ. Saf., 157, 441-456. https://doi.org/10.1016/j.ecoenv.2018.03.089. DOI: https://doi.org/10.1016/j.ecoenv.2018.03.089

El-Naas, M. H., Al-Muhtaseb, S., and Makhlouf, S. (2009). Biodegradation of Phenol by Pseudomonas Putida Immobilized in Polyvinyl Alcohol (PVA) gel. J. Hazard. Mater., 164, 720-725. https://doi.org/10.1016/j.jhazmat.2008.08.059. DOI: https://doi.org/10.1016/j.jhazmat.2008.08.059

Fan, Y., Wang, Y., and Qian, P.Y. (2004). Optimization of Phthalic Acid Batch Biodegradation and the Use of Modified Richards Model for Modelling Degradation. Int. Biodeterior. Biodegrad., 53, 57-63. https://doi.org/10.1016/j.ibiod.2003.10.001. DOI: https://doi.org/10.1016/j.ibiod.2003.10.001

Jiang, H. L., Tay, S. T., Maszenan, A. M., and Tay, J. H. (2006). Physiological Traits of Bacterial Strains Isolated from Phenol-Degrading Aerobic Granules. FEMS Microbiol. Ecol., 57, 182-191. https://doi.org/10.1111/j.1574-6941.2006.00114.x. DOI: https://doi.org/10.1111/j.1574-6941.2006.00114.x

Khleifat, K., Magharbeh, M., Alqaraleh, M., Al-Sarayrah, M., Alfarrayeh, I., Al Qaisi, Y., Alsarayreh, A., & Al-kafaween, M. A. (2022). Biodegradation modeling of phenol using Curtobacterium flaccumfaciens as plant-growth-promoting bacteria. Heliyon, 8(9), 10490. https://doi.org/10.1016/j.heliyon.2022.e10490. DOI: https://doi.org/10.1016/j.heliyon.2022.e10490

Khraisheh, M., Al-Ghouti, M.A., and AlMomani, F.P. (2020). Putida as Biosorbent for the Remediation of Cobalt and Phenol from Industrial Waste Wastewaters. Environ. Technol. Innovat., 20, 101148. https://doi.org/10.1016/j.eti.2020.101148. DOI: https://doi.org/10.1016/j.eti.2020.101148

Kurzbaum, E., Raizner, Y., Kuc, M. E., Kulikov, A., Hakimi, B., Kruh, L. I., & Menashe, O. (2020). Phenol Biodegradation by Bacterial Cultures Encapsulated in 3D Microfiltration-Membrane Capsules. Environmental Technology, 41(22), 2875–2883. https://doi.org/10.1080/09593330.2019.1587005. DOI: https://doi.org/10.1080/09593330.2019.1587005

Lika, K., and Papadakis, I. A. (2009). Modeling the Biodegradation of Phenolic Compounds by Microalgae. J. Sea Res. 62, 135-146. https://doi.org/10.1016/j.seares.2009.02.005. DOI: https://doi.org/10.1016/j.seares.2009.02.005

Liu, Q. S., Liu, Y., Show, K.Y., Tay, J.H. (2009). Toxicity Effect of Phenol on Aerobic Granules, Environ. Technol., 30(1), 69-74. https://doi.org/10.1080/09593330802536339 DOI: https://doi.org/10.1080/09593330802536339

Liu, Z., Xie, W., Li, D., Peng, Y., Li, Z., Liu, S. (2016). Biodegradation of Phenol by Bacteria Strain Acinetobacter Calcoaceticus PA Isolated from Phenolic Wastewater. Int. J. Environ. Res. Publ. Health, 13(3), 300. https://doi.org/10.3390/ijerph13030300. DOI: https://doi.org/10.3390/ijerph13030300

Lucas, N., Bienaime, C., Belloy, C., Queneudec, M., Silvestre, F., and NavaSaucedo, J. (2008). Polymer Biodegradation: Mechanisms and Estimation Techniques. Chemosphere, 73, 429-442. https://doi.org/10.1016/j.chemosphere.2008.06.064. DOI: https://doi.org/10.1016/j.chemosphere.2008.06.064

Magharbeh, M.K., Khleifat, K.M., Al-kafaween, M.A., Saraireh, R., Alqaraleh, M., Qaralleh, H., Al-Tarawneh, A., Al-limoun, M.O., El-Hasan, T., Hujran, T., Ajbour, S.H., Jarrah, N., Amonov, M., Al-Jamal, H.A.N. (2021). Biodegradation of Phenol by Bacillus Simplex: Characterization and Kinetics Study. Applied Environmental Biotechnology, 6(2), 1-12. https://doi.org/10.26789/AEB.2021.02.001. DOI: https://doi.org/10.26789/AEB.2021.02.001

Melo, J. S., Kholi, S., Patwardhan, A. W., and D'Souza, S. F. (2005). Effect of Oxygen Transfer Limitations in Phenol Biodegradation. Process Biochem., 40, 625-628. https://doi.org/10.1016/j.procbio.2004.01.049. DOI: https://doi.org/10.1016/j.procbio.2004.01.049

Mohammad Nawawi, N., Shukor, M. Y., and Ibrahim, A. L. (2018). Characterization of Phenol-Degrading Bacteria: A Review. Selangor Science & Technology Review (SeSTeR), 1(1), 71–83.

Mrozik, A., Cycon, M., and Piotrowska-Seget, Z. (2010). Changes of FAME ' Profiles as a Marker of Phenol Degradation in Different Soils Inoculated with Pseudomonas sp. CF600. Int. Biodeterior. Biodegrad., 64, 86-96. https://doi.org/10.1016/j.ibiod.2009.11.002. DOI: https://doi.org/10.1016/j.ibiod.2009.11.002

Nair, C. I., Jayachandran, K., and Shashidhar, S. (2008). Biodegradation of Phenol. African Journal of Biotechnology, 7(25), 4951-4958.

Nawawi, T., Fomina, M., and Dumanskaya, T. (2020). A New Rhodococcus Aetherivorans Strain Isolated from Lubricant-Contaminated Soil as a Prospective Phenol-Biodegrading Agent. Appl. Microbiol. Biotechnol., 104, 1-15. https://doi.org/10.1007/s00253-020-10385-6. DOI: https://doi.org/10.1007/s00253-020-10385-6

Noszczynska, M., and Piotrowska-Seget, Z. (2018). Bisphenols: Application, Occurrence, Safety, and Biodegradation Mediated by Bacterial Communities in Wastewater Treatment Plants and Rivers. Chemosphere, 201, 214-223. https://doi.org/10.1016/j.chemosphere.2018.02.179. DOI: https://doi.org/10.1016/j.chemosphere.2018.02.179

Panigrahy N., Barik M., Sahoo R.K., Sahoo N.K. (2020). Metabolic Profile Analysis and Kinetics Of P-Cresol Biodegradation by an Indigenous Pseudomonas Citronellolis NS1 Isolated from Coke Oven Wastewater. Int. Biodeter. Biodegr., 147, 104837. https://doi.org/10.1016/j.ibiod.2019.104837. DOI: https://doi.org/10.1016/j.ibiod.2019.104837

Panigrahy, N., Priyadarshini, A., Sahoo, M. M., Verma, A. K., Daverey, A., & Sahoo, N. K. (2022). A Comprehensive Review on Eco-Toxicity and Biodegradation of Phenolics: Recent Progress and Future Outlook. Environmental Technology and Innovation, 27, 102423. https://doi.org/10.1016/j.eti.2022.102423. DOI: https://doi.org/10.1016/j.eti.2022.102423

Peng, S. S., Ling, N. S., and Rohana, A. (2018). Kinetics of Biodegradation of Phenol and P-Nitrophenol by Acclimated Activated Sludge. Journal of Physical Science, 29(1), 107-113. https://doi.org/10.21315/jps2018.29.s1.14. DOI: https://doi.org/10.21315/jps2018.29.s1.14

Priyadharshini S.D., and Bakthavatsalam A.K. (2019). A Comparative Study on Growth and Degradation Behavior of C. Pyrenoidosa on Synthetic Phenol and Phenolic Wastewater of a Coal Gasification Plant. J. Environ. Chem. Eng., 7, 103079. https://doi.org/10.1016/j.jece.2019.103079. DOI: https://doi.org/10.1016/j.jece.2019.103079

Qaralleh, H., Khleifat, K. M., Maha, N., Hajleh, A., Muhamad, O., Al-Limoun, Alshawawreh, Magharbeh , R., M. K., Al-Qaisi, T. S. Farah, H. S., Tayel El Hasan , Al-Tarawneh, A., Aljbour, S. H. (2022). Plant Growth-Promoting Rhizobium Nepotum Phenol Utilization: Characterization and Kinetics. Moath Alqaraleh Journal of Hunan University (Natural Sciences, 49 (4). https://doi.org/10.55463/issn.1674-2974.49.4.11. DOI: https://doi.org/10.55463/issn.1674-2974.49.4.11

Ruiz-Ordaz, N., Ruiz-Lagunez, J. C., Castañon-González, J. H., Hernández-Manzano, E., Cristiani-Urbina, E., & Galíndez-Mayer, J. (2001). Phenol Biodegradation Using a Repeated Batch Culture of Candida Tropicalis in a Multistage Bubble Column. Revista latinoamericana de microbiologia, 43(1), 19–25.

Sahoo, N.K., Ghosh, P.K., and Pakshirajan, K. (2011). Kinetics of 4-bromophenol Degradation Using Calcium Alginate Immobilized Arthrobacter Chlorophenolicus A6. Int J Earth Sci Eng., 4, 663-668.

Santos, V.L., Monteiro, A.S., Braga, D.T., and Santoro, M.M. (2009). Phenol Degradation by Aureobasidium Pullulans FE13 Isolated from Industrial Effluents. J of Hazard Mat., 61(2-3), 1413-1420. https://doi.org/10.1016/j.jhazmat.2008.04.112. DOI: https://doi.org/10.1016/j.jhazmat.2008.04.112

Shah, A. A., Hasan, F., Hameed, A., and Ahmed, S. (2008). Biological Degradation of Plastics: a Comprehensive Review. Biotechnol. Adv., 26, 246-265. https://doi.org/10.1016/j.biotechadv.2007.12.005. DOI: https://doi.org/10.1016/j.biotechadv.2007.12.005

Shourian, M., Noghabi, K.A., Zahiri, H.S., Bagheri, T., Karballaei, G., Mollaei, M., Rad, I., Ahadi, S., Raheb, J., Abbasi, H., (2009). Efficient Phenol Degradation by a Newly Characterized, Pseudomonas Sp. SA01 Isolated from Pharmaceutical Wastewaters. Desalination, 246, 577-594. https://doi.org/10.1016/j.desal.2008.07.015. DOI: https://doi.org/10.1016/j.desal.2008.07.015

Spataro, F., Ademollo, N., Pescatore, T., Rauseo, J., and Patrolecco, L. (2019). Antibiotic Residues and Endocrine Disrupting Compounds in Municipal Wastewater Treatment Plants in Rome, Italy. Microchem. J., 148, 634-642. https://doi.org/10.1016/j.microc.2019.05.053. DOI: https://doi.org/10.1016/j.microc.2019.05.053

Trigo, A., Valencia, A., and Cases, I. (2009). Systemic Approaches to Biodegradation. FEMS Microbiol. Rev., 33, 98-108. https://doi.org/10.1111/j.1574-6976.2008.00143.x. DOI: https://doi.org/10.1111/j.1574-6976.2008.00143.x

Tsai, S. Y., and Juang, R. S. (2006). Biodegradation of Phenol and Sodium Salicylate Mixtures by Suspended Pseudomonas Putida CCRC 14365. J. Hazard. Mater., B138, 125-132. https://doi.org/10.1016/j.jhazmat.2006.05.044. DOI: https://doi.org/10.1016/j.jhazmat.2006.05.044

Ucun, H., Yildiz, E., and Nuhoglu, A. (2010). Phenol Biodegradation in a Batch Jet Loop Bioreactor (JLB): Kinetics Study and Ph Variation. Bioresour. Technol., 101, 2965-2971. https://doi.org/10.1016/j.biortech.2009.12.005. DOI: https://doi.org/10.1016/j.biortech.2009.12.005

Wang, L., Min, M., Li, Y., Chen, P., Chen, Y., Liu, Y., Wang, Y., Ruan, R. (2010). Cultivation of Green Algae Chlorella Sp. In Different Wastewaters from Municipal Wastewater Treatment Plant. Applied Biochemistry and Biotechnology, 162, 1174-1186. https://doi.org/10.1007/s12010-009-8866-7. DOI: https://doi.org/10.1007/s12010-009-8866-7

Wei, X., Gilevska, T., Wetzig, F., and Dorer, C. (2016). Characterization of Phenol and Cresol Biodegradation by Compound-Specific Stableisotope Analysis. Environ. Pollut., 210, 166-173. https://doi.org/10.1016/j.envpol.2015.11.005. DOI: https://doi.org/10.1016/j.envpol.2015.11.005

Wen, Y., Li, C., Song, X. and Yang, Y. (2020). Biodegradation of Phenol by Rhodococcus Sp. Strain SKC: Characterization and Kinetics Study. Molecules, 25, 3665. https://doi.org/10.3390/molecules25163665. DOI: https://doi.org/10.3390/molecules25163665

Yan, J., Jianping, W., Hongmei, L., Suliang, Y., Zongding, H., (2005). The Biodegradation of Phenol at High Initial Concentration by the Yeast Candida Tropicalis. Biochem. Eng. J., 24, 243-247. https://doi.org/10.1016/j.bej.2005.02.016. DOI: https://doi.org/10.1016/j.bej.2005.02.016

Yuzhe, He., Wang, Z., Li, T., Peng, X., Tang, Y., and Jia, X. (2022). Biodegradation of Phenol by Candida Tropicalis Sp.: Kinetics, Identification of Putative Genes and Reconstruction of Catabolic Pathways by Genomic and Transcriptomic Characteristics. Chemosphere., 308(3), 136443. https://doi.org/10.1016/j.chemosphere.2022.136443. DOI: https://doi.org/10.1016/j.chemosphere.2022.136443

Downloads

Published

2023-01-31

How to Cite

Sridevi, V., Hamzah, H. T., Alawi, N. M., Teja, D. D., Poiba, V. R., Spandana, B., & Mahdi, H. S. (2023). HALDANE KINETIC STUDY ON BIODEGRADATION OF PHENOL -A COMPREHENSIVE REVIEW. International Journal of Research -GRANTHAALAYAH, 11(1), 92–105. https://doi.org/10.29121/granthaalayah.v11.i1.2023.4993