UNDERSTANDING THE CONCEPT OF PSEUDOMONAS AERUGINOSA BASIC RESISTANCE MECHANISMS AND IMPACT ON CYSTIC FIBROSIS PATIENTS

Authors

  • Ghaith R Mohammed Assistant Lecturer, College of Pharmacy, University of Mosul, Iraq

DOI:

https://doi.org/10.29121/granthaalayah.v12.i7.2024.5882

Keywords:

Pseudomonas Aeruginosa, Cystic Fibrosis Patients, Healthcare Providers

Abstract [English]

Numerous human illnesses, mostly connected to healthcare providers, are linked to Pseudomonas aeruginosa. It is linked to antibiotic resistance in hospitals, which makes treatment extremely difficult. However, biofilm-related P. aeruginosa infections provide one of the most difficult treatment problems. The intricate structure of the P. aeruginosa biofilm adds to the pathogenicity of this microbe by causing it to evade the immune system, cause persistent infections that are hard to treat, and result in treatment failure.
We looked at a number of molecular facets of P. aeruginosa biofilm pathogenicity. It is believed that anaerobic circumstances, bacterial quorum-sensing systems, and environmental factors in the cystic fibrosis airway all contribute to the production of biofilms in the lung. In order to favor either acute infection or chronic colonization, P. aeruginosa has regulatory mechanisms that are sensitive to environmental signals. Respiratory tract-dwelling P. aeruginosa develop mutations that promote long-term colonization. P. aeruginosa biofilm development is changed by azithromycin, a macrolide that has therapeutic benefits for cystic fibrosis. Among the promising novel treatments that target the production of biofilms are compounds that interfere with quorum sensing.

Downloads

Download data is not yet available.

References

Anantharajah, A., Mingeot-Leclercq, M.P., Van Bambeke, F. (2016). Targeting the Type Three Secretion System in Pseudomonas aeruginosa. Trends Pharmacol. Sci., 37, 734-749. https://doi.org/10.1016/j.tips.2016.05.011 DOI: https://doi.org/10.1016/j.tips.2016.05.011

Belaynehe, K.M., Shin, S.W., Hong-Tae, P., Yoo, H.S. (2017). Occurrence of Aminoglycoside-Modifying Enzymes Among Isolates of Escherichia coli Exhibiting high levels of Aminoglycoside Resistance Isolated from Korean Cattle Farms. FEMS Microbiol. Lett. 2017, 364, 1-9. https://doi.org/10.1093/femsle/fnx129 DOI: https://doi.org/10.1093/femsle/fnx129

Bleves S, Soscia C, Nogueira-Orlandi P, (2005). Quorum Sensing Negatively Controls Type III Secretion Regulon Expression in Pseudomonas Aeruginosa PAO1. J Bacteriol 187:3898-3902. https://doi.org/10.1128/JB.187.11.3898-3902.2005 DOI: https://doi.org/10.1128/JB.187.11.3898-3902.2005

Burns JL, Gibson RL, McNamara S, Yim D, (2001). Longitudinal Assessment of Pseudomonas Aeruginosa in Young Children with Cystic Fibrosis. J Infect Dis., 183:444-452. https://doi.org/10.1086/318075 DOI: https://doi.org/10.1086/318075

Ciszek-Lenda, M., Strus, M., Walczewska, M., Majka, G., Machul-Zwirbla, A., Mikolajczyk, D., Gorska, S., Gamian, A., Chain, B., Marcinkiewicz, J. (2019).Pseudomonas Aeruginosa Biofilm is a Potent Inducer of Phagocyte Hyperinflammation. Inflamm. Res., 68,397-413. https://doi.org/10.1007/s00011-019-01227-x DOI: https://doi.org/10.1007/s00011-019-01227-x

Cobb LM, Mychaleckyj JC, Wozniak DJ, Lopez-Boado YS.(2004). Pseudomonas Aeruginosa Flagellin and Alginate Elicit Very Distinct Gene Expression Patterns in Airway Epithelial Cells: Implications for Cystic Fibrosis Disease. J Immunol, 173:5659-5670. F https://doi.org/10.4049/jimmunol.173.9.5659 DOI: https://doi.org/10.4049/jimmunol.173.9.5659

Cornelis, P., Matthijs, S., Van Oeffelen, L. (2009). Iron uptake regulation in Pseudomonas aeruginosa. Biometals 2009, 22, 15-22. https://doi.org/10.1007/s10534-008-9193-0 DOI: https://doi.org/10.1007/s10534-008-9193-0

Dauner, M., Skerra, A.(2020). Scavenging Bacterial Siderophores with Engineered Lipocalin Proteins as an Alternative Antimicrobial Strategy. Chembiochem, 21, 601-606. https://doi.org/10.1002/cbic.201900564 DOI: https://doi.org/10.1002/cbic.201900564

Dossel, J., Meyer-Hoffert, U., Schroder, J.M., Gerstel, U. (2012). Pseudomonas aeruginosa-derived rhamnolipids subvert the host innate immune response through manipulation of the human beta-defensin-2 expression. Cell Microbiol., 14, 1364-1375. https://doi.org/10.1111/j.1462-5822.2012.01801.x DOI: https://doi.org/10.1111/j.1462-5822.2012.01801.x

Equi AC, Davies JC, Painter H, (2006). Exploring the Mechanisms of Macrolides in Cystic Fibrosis. Respir Med, 100:687-697. https://doi.org/10.1016/j.rmed.2005.07.016 DOI: https://doi.org/10.1016/j.rmed.2005.07.016

Filloux, A., Vallet, I. (2003).Biofilm: Set-up and Organization of a Bacterial Community. Med. Sci, 19, 77-83. https://doi.org/10.1051/medsci/200319177 DOI: https://doi.org/10.1051/medsci/200319177

Gambello, M.J., Kaye, S., Iglewski, B.H.(1993). LasR of Pseudomonas aeruginosa is a transcriptional activator of the alkaline protease gene (apr) and an enhancer of exotoxin A expression. Infect. Immun. 61, 1180-1184. https://doi.org/10.1128/iai.61.4.1180-1184.1993 DOI: https://doi.org/10.1128/iai.61.4.1180-1184.1993

Gibson RL, Burns JL, Ramsey BW.(2003). Pathophysiology and Management of Pulmonary Infections in Cystic Fibrosis. Am J Respir Crit Care Med ,168:918-951. https://doi.org/10.1164/rccm.200304-505SO DOI: https://doi.org/10.1164/rccm.200304-505SO

Gillis RJ, White KG, Choi KH, (2005). Molecular Basis of Azithromycin-Resistant Pseudomonas Aeruginosa Biofilms. Antimicrob Agents Chemother 49:3858-3867. https://doi.org/10.1128/AAC.49.9.3858-3867.2005 DOI: https://doi.org/10.1128/AAC.49.9.3858-3867.2005

Goltermann, L., Tolker-Nielsen, T. (2017). Importance of the Exopolysaccharide Matrix in Antimicrobial Tolerance of Pseudomonas aeruginosa Aggregates. Antimicrob. Agents Chemother., 61, e02696-16. https://doi.org/10.1128/AAC.02696-16 DOI: https://doi.org/10.1128/AAC.02696-16

Guo, Q., Kong, W., Jin, S., Chen, L., Xu, Y., Duan, K. (2014). PqsR-dependent and PqsR-independent regulation of motility and biofilm formation by PQS in Pseudomonas aeruginosa PAO1. J. Basic Microbiol, 54, 633-643. https://doi.org/10.1002/jobm.201300091 DOI: https://doi.org/10.1002/jobm.201300091

Halldorsson, S., Gudjonsson, T., Gottfredsson, M., Singh, P.K., Gudmundsson, G.H., Baldursson, O. (2010). Azithromycin maintains airway epithelial integrity during Pseudomonas aeruginosa infection. Am. J. Respir. Cell Mol. Biol., 42, 62-68. https://doi.org/10.1165/rcmb.2008-0357OC DOI: https://doi.org/10.1165/rcmb.2008-0357OC

Hendrie, C.A. (1989). Naloxone-sensitive Hyperalgesia follows Analgesia Induced by Morphine and Environmental Stimulation. Pharmacol. Biochem. Behav., 32, 961-966. https://doi.org/10.1016/0091-3057(89)90066-X DOI: https://doi.org/10.1016/0091-3057(89)90066-X

Hybiske K, Ichikawa JK, Huang V, (2004). Cystic fibrosis airway epithelial cell polarity and bacterial flagellin determine host response to Pseudomonas aeruginosa. Cell Microbiol 6:49-63. https://doi.org/10.1046/j.1462-5822.2003.00342.x DOI: https://doi.org/10.1046/j.1462-5822.2003.00342.x

Iiyama, K., Takahashi, E., Lee, J.M., Mon, H., Morishita, M., Kusakabe, T., Yasunaga-Aoki, C.(2017). Alkaline protease contributes to pyocyanin production in Pseudomonas aeruginosa. FEMS Microbiol. Lett. , 364, 1-7.2 https://doi.org/10.1093/femsle/fnx051 DOI: https://doi.org/10.1093/femsle/fnx051

Jacobsen, T., Bardiaux, B., Francetic, O., Izadi-Pruneyre, N., Nilges, M. (2020).Structure and function of minor pilins of type IV pili. Med. Microbiol. Immunol. 2020, 209, 301-308.2 https://doi.org/10.1007/s00430-019-00642-5 DOI: https://doi.org/10.1007/s00430-019-00642-5

Kalluf, K.O., Arend, L.N., Wuicik, T.E., Pilonetto, M., Tuon, F.F. (2017). Molecular Epidemiology of SPM-1-producing Pseudomonas aeruginosa by rep-PCR in hospitals in Parana, Brazil. Infect. Genet. Evol., 49, 130-133. https://doi.org/10.1016/j.meegid.2016.11.025 DOI: https://doi.org/10.1016/j.meegid.2016.11.025

Kang, C.I., Kim, S.H., Kim, H.B., Park, S.W., Choe, Y.J., Oh, M.D., Kim, E.C., Choe, K.W. (2003). Pseudomonas Aeruginosa Bacteremia: Risk Factors for Mortality and Influence of Delayed Receipt of Effective Antimicrobial Therapy on Clinical Outcome. Clin. Infect. Dis., 37, 745-751.2 https://doi.org/10.1086/377200 DOI: https://doi.org/10.1086/377200

Kong F, Young L, Chen Y, (2006). Pseudomonas Aeruginosa Pyocyanin Inactivates Lung Epithelial Vaculoar Atpase-Dependent Cystic Fibrosis Transmembrane Conductance Regulator Expression and localization. Cell Microbiol 8:1121-1133.2 https://doi.org/10.1111/j.1462-5822.2006.00696.x DOI: https://doi.org/10.1111/j.1462-5822.2006.00696.x

Kownatzki R, Tummler B, Doring G.(1987). Rhamnolipid of Pseudomonas Aeruginosa in Sputum of Cystic Fibrosis Patients. Lancet, 8540:1026-1027. https://doi.org/10.1016/S0140-6736(87)92286-0 DOI: https://doi.org/10.1016/S0140-6736(87)92286-0

Lee B, Haagensen JA, Ciofu O, (2005). Heterogeneity of Biofilms Formed by Nonmucoid Pseudomonas Aeruginosa Isolates from Patients with Cystic Fibrosis. J Clin Microbiol, 43:5247-5255. https://doi.org/10.1128/JCM.43.10.5247-5255.2005 DOI: https://doi.org/10.1128/JCM.43.10.5247-5255.2005

Li, X.H., Lee, J.H. (2019). Quorum sensing-dependent post-secretional activation of extracellular proteases in Pseudomonas aeruginosa. J. Biol. Chem. 2019, 294, 19635-19644. https://doi.org/10.1074/jbc.RA119.011047 DOI: https://doi.org/10.1074/jbc.RA119.011047

Li, X.Z., Plesiat, P., Nikaido, H. (2015). The Challenge of Efflux-Mediated Antibiotic Resistance in Gram-Negative Bacteria. Clin. Microbiol. Rev. 2015, 28, 337-418. https://doi.org/10.1128/CMR.00117-14 DOI: https://doi.org/10.1128/CMR.00117-14

Lister, P.D., Wolter, D.J., Hanson, N.D.(2009). Antibacterial-Resistant Pseudomonas Aeruginosa: Clinical Impact and Complex Regulation of Chromosomally Encoded Resistance Mechanisms. Clin. Microbiol. Rev. 2009, 22, 582-610. https://doi.org/10.1128/CMR.00040-09 DOI: https://doi.org/10.1128/CMR.00040-09

Mall M, Grubb BR, Harkema JR, (2004). Increased Airway Epithelial Na+ Absorption Produces Cystic Fibrosis-Like Lung Disease in Mice. Nat Med, 10:487-493. https://doi.org/10.1038/nm1028 DOI: https://doi.org/10.1038/nm1028

Mann, E.E., Wozniak, D.J. (2012). Pseudomonas biofilm matrix composition and niche biology. FEMS Microbiol. Rev., 36, 893-916. https://doi.org/10.1111/j.1574-6976.2011.00322.x DOI: https://doi.org/10.1111/j.1574-6976.2011.00322.x

McKnight, S.L., Iglewski, B.H., Pesci, E.C. (2000). The Pseudomonas Quinolone Signal Regulates Rhl Quorum Sensing in Pseudomonas Aeruginosa. J. Bacteriol., 182, 2702-2708. https://doi.org/10.1128/JB.182.10.2702-2708.2000 DOI: https://doi.org/10.1128/JB.182.10.2702-2708.2000

Michalska, M., Wolf, P. (2015). Pseudomonas Exotoxin A: Optimized by Evolution for Effective Killing. Front. Microbiol., 6, 963. https://doi.org/10.3389/fmicb.2015.00963 DOI: https://doi.org/10.3389/fmicb.2015.00963

Nguyen D, (2006). Singh PK. Evolving stealth: Genetic Adaptation of Pseudomonas Aeruginosa During Cystic Fibrosis Infections. Proc Natl Acad Sci U S A ,103:8305-8306. https://doi.org/10.1073/pnas.0602526103 DOI: https://doi.org/10.1073/pnas.0602526103

Ochsner, U.A., Reiser, J. (1995). Autoinducer-mediated regulation of rhamnolipid biosurfactant synthesis in Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA, 92, 6424-6428. https://doi.org/10.1073/pnas.92.14.6424 DOI: https://doi.org/10.1073/pnas.92.14.6424

Orgad, O., Oren, Y., Walker, S.L., Herzberg, M.(2011). The Role of Alginate in Pseudomonas Aeruginosa EPS adherence, viscoelastic properties and cell attachment. Biofouling, 27, 787-798. https://doi.org/10.1080/08927014.2011.603145 DOI: https://doi.org/10.1080/08927014.2011.603145

Pier GB. (2000). Role of the Cystic Fibrosis Transmembrane Conductance Regulator in Innate Immunity to Pseudomonas aeruginosa infections. Proc Natl Acad Sci US A, 97:8822-8828.2 https://doi.org/10.1073/pnas.97.16.8822 DOI: https://doi.org/10.1073/pnas.97.16.8822

Remold, S.K., Brown, C.K., Farris, J.E., Hundley, T.C., Perpich, J.A., Purdy, M.E.(n.d) (Differential Habitat use and Niche Partitioning by Pseudomonas Species in Human Homes. Microb. Ecol., 62, 505-517. https://doi.org/10.1007/s00248-011-9844-5 DOI: https://doi.org/10.1007/s00248-011-9844-5

Reynolds, D., Kollef, M. (2021).The Epidemiology and Pathogenesis and Treatment of Pseudomonas aeruginosa Infections: An Update. Drugs, 81, 2117-2131. https://doi.org/10.1007/s40265-021-01635-6 DOI: https://doi.org/10.1007/s40265-021-01635-6

Rosenfeld M, Ramsey BW, Gibson RL. (2003). Pseudomonas Acquisition in Young Patients with Cystic Fibrosis: Pathophysiology, Diagnosis, and Management. Curr Opin Pulm Med, 9:492-497.2 https://doi.org/10.1097/00063198-200311000-00008 DOI: https://doi.org/10.1097/00063198-200311000-00008

Ryder, C., Byrd, M., Wozniak, D.J.(2007). Role of Polysaccharides in Pseudomonas Aeruginosa Biofilm Development. Curr. Opin. Microbiol., 10, 644-648. https://doi.org/10.1016/j.mib.2007.09.010 DOI: https://doi.org/10.1016/j.mib.2007.09.010

Saiman L, Marshall BC, (2003).Mayer-Hamblett N, et al. Azithromycin in patients with cystic fibrosis chronically infected with Pseudomonas aeruginosa: a randomized controlled trial. JAMA, 290:1749-1756. https://doi.org/10.1001/jama.290.13.1749 DOI: https://doi.org/10.1001/jama.290.13.1749

Schuster, M., Greenberg, E.P. (2006). A network of networks: Quorum-Sensing Gene Regulation in Pseudomonas Aeruginosa. Int. J. Med. Microbiol. 2006, 296, 73-81. https://doi.org/10.1016/j.ijmm.2006.01.036 DOI: https://doi.org/10.1016/j.ijmm.2006.01.036

Smith RS, (2003).Iglewski BH. Pseudomonas Aeruginosa Quorum-Sensing Systems and Virulence. Curr Opin Microbiol 6:56-60. https://doi.org/10.1016/S1369-5274(03)00008-0 DOI: https://doi.org/10.1016/S1369-5274(03)00008-0

Spoering, A.L., Lewis, K. (2001). Biofilms and Planktonic Cells of Pseudomonas Aeruginosa have Similar Resistance to Killing by Antimicrobials. J. Bacteriol. , 183, 6746-6751. https://doi.org/10.1128/JB.183.23.6746-6751.2001 DOI: https://doi.org/10.1128/JB.183.23.6746-6751.2001

Stewart, P.S., Costerton, J.W. (2001). Antibiotic Resistance of Bacteria in Biofilms. Lancet, 358, 135-138. https://doi.org/10.1016/S0140-6736(01)05321-1 DOI: https://doi.org/10.1016/S0140-6736(01)05321-1

Stewart, P.S., Franklin, M.J. (2008). Physiological heterogeneity in biofilms. Nat. Rev. Microbiol., 6, 199-210. https://doi.org/10.1038/nrmicro1838 DOI: https://doi.org/10.1038/nrmicro1838

Stover, C.K., Pham, X.Q, Erwin, A.L., Mizoguchi, S.D., Warrener, P., Hickey, M.J., Brinkman, F.S., Hufnagle, W.O., Kowalik, D.J., Lagrou, M., (2000). Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature, 406,959-964. https://doi.org/10.1038/35023079 DOI: https://doi.org/10.1038/35023079

Tam, V.H., Chang, K.T., Abdelraouf, K., Brioso, C.G., Ameka, M., McCaskey, L.A., Weston, J.S., Caeiro, J.P., Garey, K.W. (2010). Prevalence, Resistance Mechanisms, and Susceptibility of Multidrug-resistant Bloodstream Isolates of Pseudomonas Aeruginosa. Antimicrob. Agents Chemother., 54, 1160-1164. https://doi.org/10.1128/AAC.01446-09 DOI: https://doi.org/10.1128/AAC.01446-09

Thirumalmuthu, K., Devarajan, B., Prajna, L., Mohankumar, V. (2019). Mechanisms of Fluoroquinolone and Aminoglycoside Resistance in Keratitis-Associated Pseudomonas aeruginosa. Microb. Drug Resist., 25, 813-823. https://doi.org/10.1089/mdr.2018.0218 DOI: https://doi.org/10.1089/mdr.2018.0218

Tuon, F.F., Gortz, L.W., Rocha, J.L. (2012). Risk factors for pan-resistant Pseudomonas aeruginosa bacteremia and the adequacy of antibiotic therapy. Braz. J. Infect. Dis. , 16, 351-356. https://doi.org/10.1016/j.bjid.2012.06.009 DOI: https://doi.org/10.1016/j.bjid.2012.06.009

Tuon, F.F., Rocha, J.L., Gasparetto, J. (2019). Polymyxin B and colistin-the economic burden of nephrotoxicity against multidrug resistant bacteria. J. Med. Econ. 2019, 22, 158-162. https://doi.org/10.1080/13696998.2018.1552431 DOI: https://doi.org/10.1080/13696998.2018.1552431

Vu, B., Chen, M., Crawford, R.J., (2009). Ivanova, E.P. Bacterial Extracellular Polysaccharides Involved in Biofilm Formation. Molecules, 14, 2535-2554. https://doi.org/10.3390/molecules14072535 DOI: https://doi.org/10.3390/molecules14072535

Walker TS, Tomlin KL, Worthen GS, (2005). Enhanced Pseudomonas Aeruginosa Biofilm Development Mediated by Human Neutrophils. Infect Immun, 73:3693-3701. https://doi.org/10.1128/IAI.73.6.3693-3701.2005 DOI: https://doi.org/10.1128/IAI.73.6.3693-3701.2005

West SE, Zeng L, Lee BL, (2002). Respiratory Infections with Pseudomonas Aeruginosa in Children with Cystic Fibrosis: Early Detection by Serology and Assessment of Risk Factors. JAMA ,287:2958-2967. https://doi.org/10.1001/jama.287.22.2958 DOI: https://doi.org/10.1001/jama.287.22.2958

Zaborina, O., Lepine, F., Xiao, G., Valuckaite, V., Chen, Y., Li, T., Ciancio, M., Zaborin, A., Petrof, E.O., Turner, J.R., (2007). Dynorphin activates quorum sensing quinolone signaling in Pseudomonas aeruginosa. PLoS Pathog., 3, e35. https://doi.org/10.1371/journal.ppat.0030035 DOI: https://doi.org/10.1371/journal.ppat.0030035

Zowawi, H.M., Harris, P.N., Roberts, M.J., Tambyah, P.A., Schembri, M.A., Pezzani, M.D., Williamson, D.A., Paterson, D.L. (2015). The Emerging Threat of Multidrug-Resistant Gram-Negative Bacteria in Urology. Nat. Rev. Urol., 12, 570-584.2 https://doi.org/10.1038/nrurol.2015.199 DOI: https://doi.org/10.1038/nrurol.2015.199

van Schaik, E.J., Giltner, C.L., Audette, G.F., Keizer, D.W., Bautista, D.L., Slupsky, C.M., Sykes, B.D., Irvin, R.T.(2005). DNA binding: A novel function of Pseudomonas aeruginosa type IV pili. J. Bacteriol., 187, 1455-1464. https://doi.org/10.1128/JB.187.4.1455-1464.2005 DOI: https://doi.org/10.1128/JB.187.4.1455-1464.2005

Downloads

Published

2024-07-31

How to Cite

Mohammed, G. R. (2024). UNDERSTANDING THE CONCEPT OF PSEUDOMONAS AERUGINOSA BASIC RESISTANCE MECHANISMS AND IMPACT ON CYSTIC FIBROSIS PATIENTS. International Journal of Research -GRANTHAALAYAH, 12(7), 184–199. https://doi.org/10.29121/granthaalayah.v12.i7.2024.5882