THE EVOLUTION OF SARS-COV-2, A REVIEW OF GENETIC MUTATION

Authors

  • Ghaith R Mohammed Assistant Lecturer, College of Pharmacy, University of Mosul, Iraq

DOI:

https://doi.org/10.29121/granthaalayah.v12.i5.2024.5913

Keywords:

COVID – 19, SARS-COV-2, Genotypes, Mutation Probability, Bats Coronaviruses

Abstract [English]

SARS-CoV-2 emerged from zoonotic coronaviruses and is a novel beta-coronavirus which causes severe respiratory disease (pneumonia and lung failure), termed COVID-19. This paper describes SARS-CoV-2 genetic features (mutations and molecular epidemiology) but highlights its key differences from animal coronaviruses. We conducted a synthesis of the knowledge regarding clinical, genetic and pathological features of animal coronaviruses in comparison to SARS-CoV-2, along with recent evidence of interspecies transmission and recombination of animal coronaviruses to inform a One Health perspective of SARS-CoV-2 infection. We also take a closer look at the likely animal reservoirs and zoonotic origins of this novel virus that could help to curb disease transmission and minimize disease impact.

Downloads

Download data is not yet available.

References

Epidemiology Working Group for NCIP Epidemic Response, Chinese Center for Disease Control and Prevention. [The epidemiological characteristics of an outbreak of 2019 novel coronavirus diseases (COVID-19) in China]. Zhonghua Liu Xing Bing Xue Za Zhi. 2020 Feb 10;41(2):145-151. Chinese. doi: 10.3760/cma.j.issn.0254-6450.2020.02.003.

Brett TS, Rohani P. Transmission dynamics reveal the impracticality of COVID-19 herd immunity strategies. Proc Natl Acad Sci U S A. 2020 Oct 13;117(41):25897-25903. doi: 10.1073/pnas.2008087117. DOI: https://doi.org/10.1073/pnas.2008087117

Guo R, Fan B, Chang X, Zhou J, Zhao Y, Shi D, Yu Z, He K, Li B. Characterization and evaluation of the pathogenicity of a natural recombinant transmissible gastroenteritis virus in China. Virology. 2020 Jun;545:24-32. doi: 10.1016/j.virol.2020.03.001. DOI: https://doi.org/10.1016/j.virol.2020.03.001

Lee PI, Hsueh PR. Emerging threats from zoonotic coronaviruses-from SARS and MERS to 2019-nCoV. J Microbiol Immunol Infect. 2020 Jun;53(3):365-367. doi: 10.1016/j.jmii.2020.02.001. DOI: https://doi.org/10.1016/j.jmii.2020.02.001

Abdelrahman Z, Li M, Wang X. Comparative Review of SARS-CoV-2, SARS-CoV, MERS-CoV, and Influenza A Respiratory Viruses. Front Immunol. 2020 Sep 11;11:552909. doi: 10.3389/fimmu.2020.552909. DOI: https://doi.org/10.3389/fimmu.2020.552909

Mohammed, G., & Abdulrahman, G. (2023). Comparative ELISA Detection of SARS-COV-2 Monoclonal Antibodies in Patients` Serum, Saliva, and Nasal Fluid in Iraq. Israa University Journal for Applied Science, 6(2), 15–41. https://doi.org/10.52865/nwgt5493. DOI: https://doi.org/10.52865/nwgt5493

Gussow AB, Auslander N, Faure G, Wolf YI, Zhang F, Koonin EV. Genomic determinants of pathogenicity in SARS-CoV-2 and other human coronaviruses. Proc Natl Acad Sci U S A. 2020 Jun 30;117(26):15193-15199. doi: 10.1073/pnas.2008176117. DOI: https://doi.org/10.1073/pnas.2008176117

Mercatelli D, Giorgi FM. Geographic and Genomic Distribution of SARS-CoV-2 Mutations. Front Microbiol. 2020 Jul 22;11:1800. doi: 10.3389/fmicb.2020.01800. DOI: https://doi.org/10.3389/fmicb.2020.01800

Xu S, Li Y. Beware of the second wave of COVID-19. Lancet. 2020 Apr 25;395(10233):1321-1322. doi: 10.1016/S0140-6736(20)30845-X. DOI: https://doi.org/10.1016/S0140-6736(20)30845-X

Wong ACP, Li X, Lau SKP, Woo PCY. Global Epidemiology of Bat Coronaviruses. Viruses. 2019 Feb 20;11(2):174. doi: 10.3390/v11020174. DOI: https://doi.org/10.3390/v11020174

Zhang, G., Li, B., Yoo, D., Qin, T., Zhang, X., Jia, Y., & Cui, S. (2020). Animal coronaviruses and SARS‐CoV‐2. Transboundary and Emerging Diseases. doi: 10.1111/tbed.13791 . DOI: https://doi.org/10.1111/tbed.13791

Tang X, Wu C, Li X, Song Y, Yao X, Wu X, Duan Y, Zhang H, Wang Y, Qian Z, Cui J, Lu J. On the origin and continuing evolution of SARS-CoV-2. Natl Sci Rev. 2020 Jun;7(6):1012-1023. doi: 10.1093/nsr/nwaa036. DOI: https://doi.org/10.1093/nsr/nwaa036

Wen J, Cheng Y, Ling R, Dai Y, Huang B, Huang W, Zhang S, Jiang Y. Antibody-dependent enhancement of coronavirus. Int J Infect Dis. 2020 Nov;100:483-489. doi: 10.1016/j.ijid.2020.09.015. DOI: https://doi.org/10.1016/j.ijid.2020.09.015

Zhang T, Wu Q, Zhang Z. Probable Pangolin Origin of SARS-CoV-2 Associated with the COVID-19 Outbreak. Curr Biol. 2020 Apr 6;30(7):1346-1351.e2. doi: 10.1016/j.cub.2020.03.022. Epub 2020 Mar 19. Erratum in: Curr Biol. 2020 Apr 20;30(8):1578. doi: 10.1016/j.cub.2020.03.063. DOI: https://doi.org/10.1016/j.cub.2020.03.022

Zhang X, Deng T, Lu J, Zhao P, Chen L, Qian M, Guo Y, Qiao H, Xu Y, Wang Y, Li X, Zhang G, Wang Z, Bian C. Molecular characterization of variant infectious bronchitis virus in China, 2019: Implications for control programmes. Transbound Emerg Dis. 2020 May;67(3):1349-1355. doi: 10.1111/tbed.13477. DOI: https://doi.org/10.1111/tbed.13477

Hasoksuz M, Alekseev K, Vlasova A, Zhang X, Spiro D, Halpin R, Wang S, Ghedin E, Saif LJ. Biologic, antigenic, and full-length genomic characterization of a bovine-like coronavirus isolated from a giraffe. J Virol. 2007 May;81(10):4981-90. doi: 10.1128/JVI.02361-06. DOI: https://doi.org/10.1128/JVI.02361-06

Toyoshima, Y., Nemoto, K., Matsumoto, S. et al. SARS-CoV-2 genomic variations associated with mortality rate of COVID-19. J Hum Genet 65, 1075–1082 (2020). https://doi.org/10.1038/s10038-020-0808-9. DOI: https://doi.org/10.1038/s10038-020-0808-9

Chen Y, Liu Q, Guo D. Emerging coronaviruses: Genome structure, replication, and pathogenesis. J Med Virol. 2020 Apr;92(4):418-423. doi: 10.1002/jmv.25681. Epub 2020 Feb 7. Erratum in: J Med Virol. 2020 Oct;92(10):2249. doi: 10.1002/jmv.26234. DOI: https://doi.org/10.1002/jmv.26234

Ugurel OM, Ata O, Turgut-Balik D. An updated analysis of variations in SARS-CoV-2 genome. Turk J Biol. 2020 Jun 21;44(3):157-167. doi: 10.3906/biy-2005-111. DOI: https://doi.org/10.3906/biy-2005-111

Kang S, Yang M, Hong Z, Zhang L, Huang Z, Chen X, He S, Zhou Z, Zhou Z, Chen Q, Yan Y, Zhang C, Shan H, Chen S. Crystal structure of SARS-CoV-2 nucleocapsid protein RNA binding domain reveals potential unique drug targeting sites. Acta Pharm Sin B. 2020 Jul;10(7):1228-1238. doi: 10.1016/j.apsb.2020.04.009. DOI: https://doi.org/10.1016/j.apsb.2020.04.009

Domańska-Blicharz K, Woźniakowski G, Konopka B, Niemczuk K, Welz M, Rola J, Socha W, Orłowska A, Antas M, Śmietanka K, Cuvelier-Mizak B. Animal Coronaviruses in the Light of COVID-19. J Vet Res. 2020 Aug 2;64(3):333-345. doi: 10.2478/jvetres-2020-0050. DOI: https://doi.org/10.2478/jvetres-2020-0050

Ward JM, Munn RJ, Gribble DH, Dungworth DL. An observation of feline infectious peritonitis. Vet Rec. 1968 Oct 19;83(16):416-7. doi: 10.1136/vr.83.16.416. DOI: https://doi.org/10.1136/vr.83.16.416

Decaro N, Buonavoglia C. An update on canine coronaviruses: viral evolution and pathobiology. Vet Microbiol. 2008 Dec 10;132(3-4):221-34. doi: 10.1016/j.vetmic.2008.06.007. DOI: https://doi.org/10.1016/j.vetmic.2008.06.007

Buonavoglia C, Decaro N, Martella V, Elia G, Campolo M, Desario C, Castagnaro M, Tempesta M. Canine coronavirus highly pathogenic for dogs. Emerg Infect Dis. 2006 Mar;12(3):492-4. doi: 10.3201/eid1203.050839. DOI: https://doi.org/10.3201/eid1203.050839

Sanchez-Morgado JM, Poynter S, Morris TH. Molecular characterization of a virulent canine coronavirus BGF strain. Virus Res. 2004 Aug;104(1):27-31. doi: 10.1016/j.virusres.2004.02.038. DOI: https://doi.org/10.1016/j.virusres.2004.02.038

Alfano F, Fusco G, Mari V, Occhiogrosso L, Miletti G, Brunetti R, Galiero G, Desario C, Cirilli M, Decaro N. Circulation of pantropic canine coronavirus in autochthonous and imported dogs, Italy. Transbound Emerg Dis. 2020 Sep;67(5):1991-1999. doi: 10.1111/tbed.13542. DOI: https://doi.org/10.1111/tbed.13542

Shiba N, Maeda K, Kato H, Mochizuki M, Iwata H. Differentiation of feline coronavirus type I and II infections by virus neutralization test. Vet Microbiol. 2007 Oct 6;124(3-4):348-52. doi: 10.1016/j.vetmic.2007.04.031. DOI: https://doi.org/10.1016/j.vetmic.2007.04.031

Terada Y, Matsui N, Noguchi K, Kuwata R, Shimoda H, Soma T, Mochizuki M, Maeda K. Emergence of pathogenic coronaviruses in cats by homologous recombination between feline and canine coronaviruses. PLoS One. 2014 Sep 2;9(9):e106534. doi: 10.1371/journal.pone.0106534. DOI: https://doi.org/10.1371/journal.pone.0106534

Jaimes JA, Millet JK, Stout AE, André NM, Whittaker GR. A Tale of Two Viruses: The Distinct Spike Glycoproteins of Feline Coronaviruses. Viruses. 2020 Jan 10;12(1):83. doi: 10.3390/v12010083. DOI: https://doi.org/10.3390/v12010083

Jaimes JA, Whittaker GR. Feline coronavirus: Insights into viral pathogenesis based on the spike protein structure and function. Virology. 2018 Apr;517:108-121. doi: 10.1016/j.virol.2017.12.027. DOI: https://doi.org/10.1016/j.virol.2017.12.027

Vlasova, A. N., Wang, Q., Jung, K., Langel, S. N., Yashpal Singh Malik, & Saif, L. J. (2020). Porcine Coronaviruses. Livestock Diseases and Management, 79–110. https://doi.org/10.1007/978-981-15-0402-0_4. DOI: https://doi.org/10.1007/978-981-15-0402-0_4

Zhang X, Zhu Y, Zhu X, Chen J, Shi H, Shi D, Dong H, Feng L. ORF3a deletion in field strains of porcine-transmissible gastroenteritis virus in China: A hint of association with porcine respiratory coronavirus. Transbound Emerg Dis. 2017 Jun;64(3):698-702. doi: 10.1111/tbed.12634. DOI: https://doi.org/10.1111/tbed.12634

Chen F, Knutson TP, Rossow S, Saif LJ, Marthaler DG. Decline of transmissible gastroenteritis virus and its complex evolutionary relationship with porcine respiratory coronavirus in the United States. Sci Rep. 2019 Mar 8;9(1):3953. doi: 10.1038/s41598-019-40564-z. DOI: https://doi.org/10.1038/s41598-019-40564-z

Two consecutive proline substitutions in the fusion peptide of swine acute diarrhea syndrome coronavirus spike protein reduce cell-cell fusion. (2023). Journal of Preventive Veterinary Medicine, 47(4), 185–189. https://doi.org/10.13041/jpvm.2023.47.4.185 DOI: https://doi.org/10.13041/jpvm.2023.47.4.185

Ma T, Xu L, Ren M, Shen J, Han Z, Sun J, Zhao Y, Liu S. Novel genotype of infectious bronchitis virus isolated in China. Vet Microbiol. 2019 Mar;230:178-186. doi: 10.1016/j.vetmic.2019.01.020. DOI: https://doi.org/10.1016/j.vetmic.2019.01.020

Zhou H, Zhang M, Tian X, Shao H, Qian K, Ye J, Qin A. Identification of a novel recombinant virulent avian infectious bronchitis virus. Vet Microbiol. 2017 Feb;199:120-127. doi: 10.1016/j.vetmic.2016.12.038. DOI: https://doi.org/10.1016/j.vetmic.2016.12.038

Lam TT, Jia N, Zhang YW, Shum MH, Jiang JF, Zhu HC, Tong YG, Shi YX, Ni XB, Liao YS, Li WJ, Jiang BG, Wei W, Yuan TT, Zheng K, Cui XM, Li J, Pei GQ, Qiang X, Cheung WY, Li LF, Sun FF, Qin S, Huang JC, Leung GM, Holmes EC, Hu YL, Guan Y, Cao WC. Identifying SARS-CoV-2-related coronaviruses in Malayan pangolins. Nature. 2020 Jul;583(7815):282-285. doi: 10.1038/s41586-020-2169-0. DOI: https://doi.org/10.1038/s41586-020-2169-0

Yang YL, Yu JQ, Huang YW. Swine enteric alphacoronavirus (swine acute diarrhea syndrome coronavirus): An update three years after its discovery. Virus Res. 2020 Aug;285:198024. doi: 10.1016/j.virusres.2020.198024. DOI: https://doi.org/10.1016/j.virusres.2020.198024

Boley PA, Alhamo MA, Lossie G, Yadav KK, Vasquez-Lee M, Saif LJ, Kenney SP. Porcine Deltacoronavirus Infection and Transmission in Poultry, United States1. Emerg Infect Dis. 2020 Feb;26(2):255-265. doi: 10.3201/eid2602.190346. DOI: https://doi.org/10.3201/eid2602.190346

Puelles VG, Lütgehetmann M, Lindenmeyer MT, Sperhake JP, Wong MN, Allweiss L, Chilla S, Heinemann A, Wanner N, Liu S, Braun F, Lu S, Pfefferle S, Schröder AS, Edler C, Gross O, Glatzel M, Wichmann D, Wiech T, Kluge S, Pueschel K, Aepfelbacher M, Huber TB. Multiorgan and Renal Tropism of SARS-CoV-2. N Engl J Med. 2020 Aug 6;383(6):590-592. doi: 10.1056/NEJMc2011400. DOI: https://doi.org/10.1056/NEJMc2011400

Belser JA, Katz JM, Tumpey TM. The ferret as a model organism to study influenza A virus infection. Dis Model Mech. 2011 Sep;4(5):575-9. doi: 10.1242/dmm.007823. DOI: https://doi.org/10.1242/dmm.007823

M Najimudeen S, H Hassan MS, C Cork S, Abdul-Careem MF. Infectious Bronchitis Coronavirus Infection in Chickens: Multiple System Disease with Immune Suppression. Pathogens. 2020 Sep 24;9(10):779. doi: 10.3390/pathogens9100779. DOI: https://doi.org/10.3390/pathogens9100779

Decaro N, Martella V, Saif LJ, Buonavoglia C. COVID-19 from veterinary medicine and one health perspectives: What animal coronaviruses have taught us. Res Vet Sci. 2020 Aug;131:21-23. doi: 10.1016/j.rvsc.2020.04.009. DOI: https://doi.org/10.1016/j.rvsc.2020.04.009

Cook JK, Jackwood M, Jones RC. The long view: 40 years of infectious bronchitis research. Avian Pathol. 2012;41(3):239-50. doi: 10.1080/03079457.2012.680432. DOI: https://doi.org/10.1080/03079457.2012.680432

Downloads

Published

2024-06-16

How to Cite

Mohammed, G. R. (2024). THE EVOLUTION OF SARS-COV-2, A REVIEW OF GENETIC MUTATION. International Journal of Research -GRANTHAALAYAH, 12(5), 124–135. https://doi.org/10.29121/granthaalayah.v12.i5.2024.5913