• Imad Al-Deen Hussein Ali Al-Saidi Department of Computer Technologies Engineering, Al- Kunooze University College, Basrah, Iraq



Optical Fiber, Laser Beam, Power Attenuation, Attenuation Coefficient

Abstract [English]

Attenuation characteristics of the power of the laser beam in the optical fiber of different lengths were investigated. Two continuous wave (CW) diode lasers of two different wavelengths, 532 nm, and 671 nm, in the visible spectral region, were used for the injection of the laser beam into the optical fiber. The output powers of both lasers can be varied over the range 0 - 50 mW. The attenuation coefficient (α) of the optical fiber was determined for the chosen wavelengths, 532 nm, and 671 nm. The attenuation coefficient (α) was measured as a function of the laser input power (Pin) and the optical fiber length. The obtained results show that the power attenuation of the laser beam is wavelength dependent. The power attenuation is significantly affected by changing the wavelength of the injected laser beam. It is observed that the increase in the laser input power (Pin) leads to an appreciable decrease in the attenuation of the laser power in the optical fiber.


Download data is not yet available.


Addanki, S., Amiri, I.S., and Yupapin, P. (2018). Review of Optical Fibers-Introduction and Applications in Fiber Lasers. Results in Physics. 10, 743-750. DOI:

Agrwal, G. P. (2021). Fiber-Optic Communication Systems (5th ed.). John Wiley and Sons. USA : Inc., Publication. DOI:

Correia, R., James, S., Lee, S. W., Morgan, S.P. and Korposh, S. (2018). Biomedical Application of Optical Fiber Sensors, Journal of Optics, 20, 1-26. DOI:

Dasari, A. (2015). Optical Fiber Communication Evolution, Technology and Future Trends. Journal of Advance Research in Electrical & Electronics Engineering, 2(8), 15-22. DOI:

Dong, L. and Samson, B. (2017). Fiber Lasers Basics, Technology, and Applications. USA : CRC Press. DOI:

Elliott, B. (2021). Optical Communication. USA : AIP Publishing. DOI:

Fenta, M.C., Potter, D.K. & Szanyi, J. (2021). Fibre Optic Methods of Prospecting : A Comprehensive and Modern Branch of Geophysics. Surv Geophys 42, 551–584. DOI:

Ferreira, M. F. S. and Paul, M. C. (2021). Optical Fiber Technology and Applications, Recent Advances. UK : IOP Publishing Ltd. DOI:

Guellar, G. H. (2021). Fiber Optics : Technology and Applications. UK : IntechOpen Ltd. DOI:

Guellar, G. H., and Imani, R. (2020). Optical Fiber Applications. UK : IntechOpen Ltd. DOI:

Guenther, B.D. and Steel, D.G. (2018). Encyclopedia of Modern Optics (2nd ed.) Elsevier Inc., USA.

Haoxiang, Z. (2020). Application and Development of Optical Fiber Communication Technology. J. Inform. Commun., 4 ,216-221.

Senior, J. M. (2014). Optical Fiber Communications : Principles and Practice, 3rd Edition, UK : Pearson Education Ltd.

Krohn, D. A., MacDougall, T. W., and Mendez, A. (2015). Fiber Optic Sensors : Fundamentals and Applications (4th ed.). USA : SPIE Press. DOI:

Meng, X., Li, J., Guo, Y., Liu, Y., Li, S., Guo, H., Bi, W., Lu, H., and Cheng, T. (2020). Experimental Study on a High-Sensitivity Optical Fiber Sensor in Wide Range Refractive Index Detection. Journal of the Optical Society of America B, 37(10), 3063-3067. DOI:

Meschede, D. (2017). Optics, Light, and Lasers : The Practical Approach to Modern Aspects of Photonics and Laser Physics. Wiley Online Library. DOI:

Mitschke, F. (2010). Fiber Optics : Physics and Technology. Springer Berlin, Heidelberg. DOI:

Pallarés-Aldeiturriaga, D., Roldán-Varona, P., Rodríguez-Cobo, L., & López-Higuera, J. M. (2020). Optical Fiber Sensors by Direct Laser Processing : A Review. Sensors, 20(23), 6971. DOI:

Ribeiro, P. A., and Raposo, M. (2018). Optics, Photonics and Laser Technology. Springer Nature, Cham, Switzerland. DOI:

Sharma, P., Pardeshi, S.K., Arora, R.K., & Singh, M. (2013). A Review of the Development in the Field of Fiber Optic Communication Systems. International Journal of Emerging Technology and Advanced Engineering, 3(5), 113-119.

Shi, W., Fang, Q., Zhu, X., Norwood, R. A., and Peyghambarian, N. (2014). Fiber Lasers and Their Applications. Applied Optics, 53, 6554-6568. DOI:

Singal, T. L. (2017). Optical Fiber Communications : Principles and Applications. Cambridge University Press. DOI:

Tiwari, A., Kumar, R., and Saxena, A. (2020). Future Trends in Fiber Optics Communications. International Journal of Engineering Applied Sciences and Technology, 4(10). 203-207. DOI:

Yuan, B. and Cai, H. (2021). Research on The Current Situation and Development Trend of Optical Fiber Communication Technology. Journal of Physics : Conference Series, 1873. DOI:

Ziyuan, C. (2019). The Basic Principle and Development Trend of Optical Fiber Communication. J. Commun. World, 26, 13-14.




How to Cite

Ali Al - Saidi, I. A. .-. D. H. (2022). INVESTIGATION OF THE LASER POWER ATTENUATION IN OPTICAL FIBER. International Journal of Research -GRANTHAALAYAH, 10(8), 73–80.