TRANSCRIPTOME SEQUENCING OF LEPISANTHES FRUTICOSA TO DISCOVER SSR MARKERS

Authors

  • Zulkifli Ahmad Seman Research Officer, Biotechnology and Nanotechnology Research Centre, MARDI Headquarters, Persiaran MARDI-UPM 43400 Serdang, Selangor Malaysia
  • Azrin Ahmad Scientist, Malaysia Genome and Vaccine Institute (MGVI), National Institute of Biotechnology Malaysia (NIBM), Jalan Bangi,43000 Kajang, Selangor, Malaysia
  • Rabiatul Adawiah Zainal Abidin Research Officer, Biotechnology and Nanotechnology Research Centre, MARDI Headquarters, Persiaran MARDI-UPM 43400 Serdang, Selangor Malaysia
  • Siti Zainab Jantan Research Officer, Biotechnology and Nanotechnology Research Centre, MARDI Headquarters, Persiaran MARDI-UPM 43400 Serdang, Selangor Malaysia
  • Mohd Hanif Azhari Noor Research Officer, Biotechnology and Nanotechnology Research Centre, MARDI Headquarters, Persiaran MARDI-UPM 43400 Serdang, Selangor Malaysia
  • Yun Shin Sew Research Officer, Biotechnology and Nanotechnology Research Centre, MARDI Headquarters, Persiaran MARDI-UPM 43400 Serdang, Selangor Malaysia
  • Mohd Norfaizal Ghazalli Deputy Director, Bio-Agrodiversity and Environment Research Centre, MARDI Headquarters, Persiaran MARDI-UPM 43400 Serdang, Selangor Malaysia
  • Khairun Hisam Nasir Research Officer, Biotechnology and Nanotechnology Research Centre, MARDI Headquarters, Persiaran MARDI-UPM 43400 Serdang, Selangor Malaysia
  • Sanimah Simoh Director, Strategic Planning and Innovation Management Centre,MARDI Headquarters, Persiaran MARDI-UPM 43400 Serdang, Selangor Malaysia
  • Mohd Shukri Mat Ali Director, Bio-Agrodiversity and Environment Research Centre, MARDI Headquarters, Persiaran MARDI-UPM 43400 Serdang, Selangor Malaysia

DOI:

https://doi.org/10.29121/granthaalayah.v10.i1.2022.4451

Keywords:

Est-Ssrs, Lepisanthes Fruticosa, Transcriptome Sequencing

Abstract [English]

Lepisanthes fruticosa (ceri Terengganu) is one of the important underutilized fruit plants with high value of bioactive compounds and pharmacological properties. Current studies have focused mainly on the bioactive compounds which are essential for functional food and pharmaceutical applications. However, studies on the diversity and conservation of L. fruticosa are still scarce since genomic and genetic resources for this plant species are still lacking. In this study, RNA sequencing of L. fruticosa leaf was carried out using Illumina HiSeq to identify potential unigenes and simple sequence repeats (SSRs). A total of 52,657 unigenes were identified from about 91,043,356 million raw sequence reads. Mining of SSRs from these unigenes have predicted a total of 23,958 SSRs which was approximately 45.58% of total unigenes obtained. Dinucleotide repeats motif was the highest (21.48%) and the next were trinucleotide repeats motif (14.65%). A total of 4,620 SSRs ranging from 12 to 116 bp were selected for experimental validation. Bioinformatic analysis via GO and KEGG platforms showed that a total of 1,861 (40.28%) SSR-containing unigenes matched to Gene Ontology (GO) terminology and 48 biochemical pathways. The SSR-containing unigenes of L. fruticosa were involved in various cell functions and a majority of their functions were associated with purine and thiamine metabolism. In addition. A majority of SSR-containing unigenes were involved in organic and heterocylic compounds bindings, indicating an active event of biosynthesis process of secondary metabolites in L. fruticosa. SSR markers obtained from this study provides new genetic information that can be utilized to facilitate future characterization of L. fruticosa accessions at molecular levels.

Downloads

Download data is not yet available.

References

Anuragi, H., H.L Dhaduk, S. Kumar, J.J. Dhruve, M.J. Parekh, and A.A. Sakure. (2016). Molecular diversity of Annona species and proximate fruit composition of selected genotypes. 3 Biotech. 6 :1-10. Retrieved from https://doi.org/10.1007/s13205-016-0520-9 DOI: https://doi.org/10.1007/s13205-016-0520-9

Badenes, M.L., T. Canyamas, C. Romero, J. Martinez-Calvo, E. Giordani and G. Llacer. (2004). Characterization of under-utilized fruits by molecular markers. A case study of loquat. Genetic Resources and Crop Evolution 51 :335-341. Retrieved from https://doi.org/10.1023/B:GRES.0000024017.57973.6f DOI: https://doi.org/10.1023/B:GRES.0000024017.57973.6f

Boubakri, H., A. Poutaraud, M.A.Wahab, C. Clayeux, R. Baltenweck-Guyot, D. Steyer, C. Marcic, A. Mliki, and I. Soustre-Gacougnolle. (2013). Thiamine modulates metabolism of the phenylpropanoid pathway leading to enhanced resistance to Plasmopara viticola in grapevine. BMC Plant Biology, 13 : Retrieved from https://doi.org/10.1186/1471-2229-13-13 DOI: https://doi.org/10.1186/1471-2229-13-31

Cardle, L., L. Ramsay, D. Milbourne, M. Macaulay, D. Marshall and R. Waugh. (2000). Computational and experimental characterization of physically clustered simple sequence repeats in plants. Genetics 156 : 847-854. Retrieved from https://doi.org/10.1093/genetics/156.2.847 DOI: https://doi.org/10.1093/genetics/156.2.847

Chen, H., L. Wang, S. Wang, C. Liu, M.W. Blair and X. Cheng. (2015). Transcriptome sequencing of mung bean (Vigna radiate L.) genes and the identification of EST-SSR markers. Plos ONE 10 : e0120273 : 10.1371/journal.pone.0120273. Retrieved from https://doi.org/10.1371/journal.pone.0120273 DOI: https://doi.org/10.1371/journal.pone.0120273

Crozier, A., M.N. Clifford. And H. Ashihara. (2007). In : H. Ashihara (ed), Plant secondary metabolites: Occurrence, structure and role in the human diet. John Wiley and Sons, New York. Retrieved from https://doi.org/10.1002/9780470988558 DOI: https://doi.org/10.1002/9780470988558

Dayang, F.B., F. Ahmad, M.H. Ruslan, and M.A. Alghoul. (2012). Drying kinetics of Malaysian Canarium odontophyllum (Dabai) fruit. WSEAS Transaction on Biology and Biomedicine 9 :77-82.

Garg, R., R.K. Patel, A.K. Tyagi. And M. Jain. (2011). De novo assembly of chickpea transcriptome using short reads for gene discovery and marker identification. DNA Res. 18 : 53-63. Retrieved from https://doi.org/10.1093/dnares/dsq028 DOI: https://doi.org/10.1093/dnares/dsq028

Goyer, A. (2010). Thiamine in plants : aspects of its metabolism and functions. Phytochemistry 71 :1615-1624. Retrieved from https://doi.org/10.1016/j.phytochem.2010.06.022 DOI: https://doi.org/10.1016/j.phytochem.2010.06.022

Gupta, P.K., I.S. Balyan, P.C. Sharma and B. Ramesh. (1996). Microsatellites in plants : A new class of molecular markers. Curr. Sci. 70 : 45-54. Retrieved from https://www.jstor.org/stable/24097472

Huang, D., Y. Zhang, M. Jin, H. Li, Z. Song, Y. Wang and J. Chen. (2014). Characterization and high cross-species transferability of microsatellite markers from the floral transcriptome of Aspidistra Saxicola (Asparagacea). Mol. Ecol. Resource 14 : 569-577. Retrieved from https://doi.org/10.1111/1755-0998.12197 DOI: https://doi.org/10.1111/1755-0998.12197

Ibrahim, M., K.N. Prasad, I. Amin, A. Azrina and A.H. Azizah. (2010). Physiochemical composition and antioxidant activities of underutilized Mangifera pajang fruit. African Journal of Biotechnology 9 :4392-4397.

Ikram, E.H.K., K.H. Eng, A.M.M. Jalil, A. Ismail, S. Idris, A. Azlan, H.S.M Nazri, N.A.M Diton and R.A.M. Mokhtar. (2009). Antioxidant capacity and total phenolic content of Malaysian underutilised fruits. J. Food Comp. Anal. 22 :388-393. Retrieved from https://doi.org/10.1016/j.jfca.2009.04.001 DOI: https://doi.org/10.1016/j.jfca.2009.04.001

Izzah, N. K., J. Lee, M. Jayakodi, S. Perumal, M. Jin, B.S. Park, K. Ahn and T.J. Yang. (2014). Transcriptome sequencing of two parental lines of cabbage (Brassica oleracea L. var. capitata L.) and construction of an EST-based genetic map. BMC Genom. 15 : DOI : 10.1186/1471-2164-15-149. Retrieved from https://doi.org/10.1186/1471-2164-15-149 DOI: https://doi.org/10.1186/1471-2164-15-149

Jhanwar, S., P. Priya, R. Garg, S.K. Parida, A.K. Tyagi and M. Jain. (2012). Transcriptome sequencing of wild chickpea as rich resources for marker development. Plant Biotechnology J. 10 : 690-702. Retrieved from https://doi.org/10.1111/j.1467-7652.2012.00712.x DOI: https://doi.org/10.1111/j.1467-7652.2012.00712.x

Jin, M., M.Y. Guo, L. Han, J.L. Li, S.Y. Yang and Y.H. Su. (2016). Transcriptome analysis of potential simple sequence repeat markers in Ammopiptanthus mongolicus. Genetic and Molecular Research 15 : DOI : 10.4238/gmr.15038581. Retrieved from https://doi.org/10.4238/gmr.15038581 DOI: https://doi.org/10.4238/gmr.15038581

Kantety, R.V., M. La Rota, D.E. Matthews and M.E. Sorrells. (2002). Data mining for simple sequence repeats in expressed sequence tags from barley, maize, rice, sorghum and wheat. Plant Mol. Biol. 48 : 501-510. Retrieved from https://doi.org/10.1023/A:1014875206165 DOI: https://doi.org/10.1023/A:1014875206165

Kuspradini, H., D. Susanto and T. Mitsunaga. (2012). Phytochemical and comparative study of antimicrobial activity of Lepisanthes amoena leaves extract. Journal of biology, agricultural and healthcare 2 :80-86.

Li, D.J., Z. Deng, B, Qin, X.H. Liu and Z.H. Men. (2012). De novo assembly and characterization of bark transcriptome using Illumina sequencing and development of EST-SSR markers in rubber tree (Hevea brasiliensis Muell. Arg.). BMC Genome 13 : DOI : 10.1186/1471-2164-13-192. Retrieved from https://doi.org/10.1186/1471-2164-13-192 DOI: https://doi.org/10.1186/1471-2164-13-192

Mirfat, A.H.S. and I. Salma. (2015). Ceri Terengganu : The future antioxidant superstar. MARDI Scientia 6 : 6.

Mirfat, A.H.S., O. Zaulia, C.L.Y. Joanna, S.M.N. Erny and I. Salma. (2017). Antioxidant activity and phytochemical content of fresh and freeze-dried Lepisanthes fruticosa fruits at different maturity stages. Journal of Agricultural Science 9 :1916-9760. Retrieved from https://doi.org/10.5539/jas.v9n2p147 DOI: https://doi.org/10.5539/jas.v9n2p147

Rizvi, A., A. Mishra, A. Mahdi, M. Ahmad and A. Basit, (2015). Natural and herbal stress remedies: à review. International Journal of Pharmacognosy 2 :155-160.

Scott, K.D., P. Eggler, G. Seaton, M. Rossetto, E.M. Ablett, L.S. Lee and R.J. Henry. (2000). Analysis of SSRs derived from grape ESTs. Theor. Appl. Genet. 100 : 723-726. Retrieved from https://doi.org/10.1007/s001220051344 DOI: https://doi.org/10.1007/s001220051344

Silva, P. I., A.M. Martins, E.G. Gouvea, M. Pessoa-Filho and M.E. Ferreira. (2013). Development and validation of microsatellite markers for Brachiaria ruziziensis obtained by partial genome assembly of Illumina single-end reads. BMC Genome 14 : DOI.org/10.1186/1471-2164-14-17. Retrieved from https://doi.org/10.1186/1471-2164-14-17 DOI: https://doi.org/10.1186/1471-2164-14-17

Smith, M.B and J. March. (2006). March's advanced organic chemistry: Reactions, mechanisms and structure. 6th Ed. John Wiley & Sons., New York.

Song, Y.P., X.B. Jiang, M. Zhang, Z.L. Wang, W.H. Bo, X.M. An, D.Q. Zhang and Z.Y. Zhang. (2012). Differences of EST-SSR and genomic-SSR markers in assessing genetic diversity in poplar. Forestry studies in China 14 : 1-7. Retrieved from https://doi.org/10.1007/s11632-012-0106-5 DOI: https://doi.org/10.1007/s11632-012-0106-5

Suzuki, T. and G.R. Waller. (1985). Purine alkaloids of the fruits of Camellia sinensis L. and Coffea arabiaca L.during fruit development. Annals of Botany 56 :537-542. Retrieved from https://doi.org/10.1093/oxfordjournals.aob.a087038 DOI: https://doi.org/10.1093/oxfordjournals.aob.a087038

Triwitayakorn, K., P. Chatkulkawin, S. Kanjanawattanawong, S. Sraphet, T. Yoocha, D. Sangsrakru, J. Chanprasert, C. Ngamphiw, N. Jomchai and K. Therawattanasuk. (2011). Transcriptome sequencing of Hevea brasiliensis for development of microsatellite markers and construction of a genetic linkage map. DNA Res. 18 : 471-482. Retrieved from https://doi.org/10.1093/dnares/dsr034 DOI: https://doi.org/10.1093/dnares/dsr034

Umikalsum, H.Z. and A.H. Mirfat, (2014). Proximate composition of Malaysia underutilized fruits. J. Trop. Agric. & Food. Sc. 42 : 63-72.

Wang, Z., B. Fang, J. Chen, X. Zhang, Z. Luo, L. Huang, X. Chen and Y. Li. (2010). De novo assembly and characterization of root transcriptome using Illumina paired-end sequencing and development of SSR markers in sweet potato (Ipomoea batatas). BMC Genomics 11 :726-739. Retrieved from https://doi.org/10.1186/1471-2164-11-726 DOI: https://doi.org/10.1186/1471-2164-11-726

Wei, W., X. Qi, L. Wang, Y. Zhang, W. Hua, D. Li, H. Lv. And X. Zhang. (2011b). Characterization of the sesame (Sesamum indicum L.) global transcriptome using Illumina paired-end sequencing and development of EST-SSR markers. BMC Genomics 12 :451-463. Retrieved from https://doi.org/10.1186/1471-2164-12-451 DOI: https://doi.org/10.1186/1471-2164-12-451

Yoichi, W., S. Sakaguchi, S. Ueno, N. Tomaru and K. Uehara. (2017). Development and characterization of EST-SSR markers for the genus Rhododendron section Brachycalyx (Ericaceae). Plant Spec. Biol. 32 :455-459. Retrieved from https://doi.org/10.1111/1442-1984.12155 DOI: https://doi.org/10.1111/1442-1984.12155

Zeng, S., G. Xiao, J. Guo, Z. Fei, Y. Xu, B.A Roe and Y. Wang. (2010). Development of a ET data set and characterization of EST-SSRs in a traditional Chinese medicinal plant, Epimedium sagittatum (Sieb. Et Zucc.) Maxim. BMC Genomics 11 : 94-104. Retrieved from https://doi.org/10.1186/1471-2164-11-94 DOI: https://doi.org/10.1186/1471-2164-11-94

Zhang, J.N., S. Liang, J.L. Duan, J. Wang, S.L. Chen, Z.S. Cheng, Q. Zhang, X.Q. Liang and Y.R. Li. (2012). De novo assembly and characterization of the transcriptome during seed development, and generation of genic-SSR markers in Peanut (Arachis hypogaea L.). BMC Genom. 13 : DOI : 10.1186/1471-2164-13-90. Retrieved from https://doi.org/10.1186/1471-2164-13-90 DOI: https://doi.org/10.1186/1471-2164-13-90

Zhang, Y., A.I.C. Wong, J. Wu, N.B.A. Karim and D. Huang. (2016). Lepisanthes alata (Malay cherry) leaves are potent inhibitors of starch hydrolases due to proanthocyanidins with high degree of polymerization. Journal of Functional Foods 25 : 568-578. Retrieved from https://doi.org/10.1016/j.jff.2016.06.035 DOI: https://doi.org/10.1016/j.jff.2016.06.035

Zheng, X., C. Pan, Y. Diao, Y. You, C. Yang and Z. Hu. (2013). Development of microsatellite markers by transcriptome sequencing in two species of Amorphophallus (Araceae). BMC Genomic 14 : 490. doi 10.1186/1471-2164-14-490. Retrieved from https://doi.org/10.1186/1471-2164-14-490 DOI: https://doi.org/10.1186/1471-2164-14-490

Zhou, Q., D. Luo, L. Ma, W. Xie, Y. Wang, Y. Wang and Z. Liu. (2016). Development and cross-species transferability of EST-SSR markers in Siberian wildrye (Elymus sibiricus L.) using Illumina sequencing. Sci. Rep. 6 : 266-278 Retrieved from https://doi.org/10.1038/srep20549 DOI: https://doi.org/10.1038/srep20549

Downloads

Published

2022-01-31

How to Cite

Seman, Z. A., Ahmad, A., Zainal Abidin, R. A., Jantan, S. Z., Azhari Noor, M. H., Sew, Y. S., Ghazalli, M. N., Nasir, K. H., Simoh, S., & Mat Ali, M. S. (2022). TRANSCRIPTOME SEQUENCING OF LEPISANTHES FRUTICOSA TO DISCOVER SSR MARKERS. International Journal of Research -GRANTHAALAYAH, 10(1), 21–33. https://doi.org/10.29121/granthaalayah.v10.i1.2022.4451

Most read articles by the same author(s)