• Doyel Chatterjee Department of Microbiology and Biotechnology, Sister Nivedita University DG 1/ 2, Action Area–I, Kolkata–700156, West Bengal, India
  • Sukanya Basu Mallick Department of Microbiology and Biotechnology, Sister Nivedita University DG 1/ 2, Action Area–I, Kolkata–700156, West Bengal, India
  • Debraj Hazra Department of Microbiology and Biotechnology, Sister Nivedita University DG 1/ 2, Action Area–I, Kolkata–700156, West Bengal, India
  • Rajat Pal Department of Microbiology and Biotechnology, Sister Nivedita University DG 1/ 2, Action Area–I, Kolkata–700156, West Bengal, India



Isoflavone, Nanoparticle, Glycitein, Genistein, And Avogadro Software


Nanocomposite formulation is still in its evolving state. However due to its significant therapeutic applications it has grabbed the attention of many researchers. Isoflavonewhich is widely found in soy products have tremendous medicinal propertieswhen it interacts with nanoparticles can become a boon. Hence in this study, we are reporting the interaction properties/patterns of two ubiquitous flavones namelyGlycitein and Genistein forming a nanocomposite model with 12 different metals such as Gold, Silver, Palladium, Platinum, Ruthenium, Rhodium, Cadmium, Iron, Nickel, Zinc, Copper and Antimony based ontheir potency to form nanoparticles. To mimic the Nanocomposite, model the formulation was conducted in Avogadro Software for windows. Glycitein and Genistein create a possibility of selecting the most suitable -OH position that would serve as the binding site. On selection of the appropriate binding site the interaction amid two molecules of glycitein and genistein placed sidewise held together by above-mentioned metals also surrounded by the same metal on another vacant -OH position forming a close saturated structure subjected for interaction. Based on predominantly energy levels the least energy obtained model was Cadmium and the peak procured by Antimony making it least stable and unfavorable for the perceived result.


Download data is not yet available.


B. Duncan, C. Kim, and V. M. Rotello (2010), "Gold nanoparticle platforms as drug and biomacromolecule delivery systems," J. Control. Release Off. J. Control. Release Soc., vol. 148, no. 1, pp. 122-127, Nov, doi: 10.1016/j.jconrel.2010.06.004. Retrieved from DOI:

C. A. Dos Santos et al. (2014), "Silver nanoparticles: therapeutic uses, toxicity, and safety issues," J. Pharm. Sci., vol. 103, no. 7, pp. 1931-1944, Jul, doi: 10.1002/jps.24001. Retrieved from DOI:

C. I. C. Crucho and M. T. Barros (2017), "Polymeric nanoparticles: A study on the preparation variables and characterization methods," Mater. Sci. Eng. C Mater. Biol. Appl., vol. 80, pp. 771-784, Nov, doi: 10.1016/j.msec.2017.06.004. Retrieved from DOI:

C. P. Adams, K. A. Walker, S. O. Obare, and K. M. Docherty (2014), "Size-Dependent Antimicrobial Effects of Novel Palladium Nanoparticles," PLoS ONE, vol. 9, no. 1, p. e85981, Jan., doi: 10.1371/journal.pone.0085981. Retrieved from DOI:

C. S. Levin et al. (2009), "Magnetic-plasmonic core-shell nanoparticles," ACS Nano, vol. 3, no. 6, pp. 1379-1388, Jun., doi: 10.1021/nn900118a. Retrieved from DOI:

C. Spagnuolo et al. (2015), "Genistein and cancer: current status, challenges, and future directions," Adv. Nutr. Bethesda Md, vol. 6, no. 4, pp. 408-419, Jul, doi: 10.3945/an.114.008052. Retrieved from DOI:

D. C. Vitale, C. Piazza, B. Melilli, F. Drago, and S. Salomone (2013), "Isoflavones: estrogenic activity, biological effect and bioavailability," Eur. J. Drug Metab. Pharmacokinet., vol. 38, no. 1, pp. 15-25, Mar, doi: 10.1007/s13318-012-0112-y. Retrieved from DOI:

D. Guo et al. (2009), "Synergistic Effect of Functionalized Nickel Nanoparticles and Quercetin on Inhibition of the SMMC-7721 Cells Proliferation," Nanoscale Res. Lett., vol. 4, no. 12, pp. 1395-1402, Aug, doi: 10.1007/s11671- 009-9411-x. Retrieved from DOI:

D. Hazra, D. Chatterjee, and R. Pal (2020), "Designing of Nanocomposite model structure using Gallic acid and Ellagic acid with four different metals," Int. J. Life Sci., vol. 8, no. 3, Art. no. 3, Sep. Retrieved from DOI:

G. Viauet al. (2003), "Ruthenium Nanoparticles: Size, Shape, and Self-Assemblies," Chem. Mater., vol. 15, no. 2, pp. 486-494, doi: 10.1021/cm0212109. Retrieved from DOI:

H. K. K, N. Venkatesh, H. Bhowmik, and A. Kuila (2018), "Metallic Nanoparticle: A Review," Biomed. J. Sci. Tech. Res., vol. 4, no. 2, pp. 3765-3775, doi: 10.26717/BJSTR.2018.04.001011. Retrieved from DOI:

J. Kim, T. Shirasawa, and Y. Miyamoto (2010), "The effect of TAT conjugated platinum nanoparticles on lifespan in a nematode Caenorhabditis elegans model," Biomaterials, vol. 31, no. 22, pp. 5849-5854, Aug., doi: 10.1016/j.biomaterials.2010.03.077. Retrieved from DOI:

K. Shimoda and H. Hamada (2010), "Synthesis of beta-maltooligosaccharides of glycitein and daidzein and their anti-oxidant and anti-allergic activities," Mol. Basel Switz., vol. 15, no. 8, pp. 5153-5161, Jul., doi: 10.3390/molecules15085153. Retrieved from DOI:

L. Qi, H. Cölfen, and M. Antonietti (2001), "Synthesis and Characterization of CdS Nanoparticles Stabilized by Double-Hydrophilic Block Copolymers," Nano Lett., vol. 1, no. 2, pp. 61-65, doi: 10.1021/nl0055052. Retrieved from DOI:

L. Xu, D. Liu, D. Chen, H. Liu, and J. Yang (2019), "Size and shape controlled synthesis of rhodium nanoparticles," Heliyon, vol. 5, no. 1, p. e01165, Jan., doi: 10.1016/j.heliyon.2019.e01165. Retrieved from DOI:

M. D. Hanwell, D. E. Curtis, D. C. Lonie, T. Vandermeersch, E. Zurek, and G. R. Hutchison (2012), "Avogadro: an advanced semantic chemical editor, visualization, and analysis platform," J. Cheminformatics, vol. 4, no. 1, p. 17, Aug, doi: 10.1186/1758-2946-4-17. Retrieved from DOI:

M. Pabich and M. Materska (2019), "Biological Effect of Soy Isoflavones in the Prevention of Civilization Diseases," Nutrients, vol. 11, no. 7, p. E1660, Jul, doi: 10.3390/nu11071660. Retrieved from DOI:

M. Thrane, P. V. Paulsen, M. W. Orcutt, and T. M. Krieger (2017), "Chapter 2 - Soy Protein: Impacts, Production, and Applications," in Sustainable Protein Sources, S. R. Nadathur, J. P. D. Wanasundara, and L. Scanlin, Eds. San Diego: Academic Press, pp. 23-45. doi: Retrieved from DOI:

P. Thangavel, A. Puga-Olguín, J. F. Rodríguez-Landa, and R. C. Zepeda (2019), "Genistein as Potential Therapeutic Candidate for Menopausal Symptoms and Other Related Diseases," Mol. Basel Switz., vol. 24, no. 21, p. E3892, Oct, doi: 10.3390/molecules24213892. Retrieved from DOI:

R. Lu, Z. Zheng, Y. Yin, and Z. Jiang (2019), "Effect of Genistein on Cholesterol Metabolism-Related Genes in HepG2 Cell," J. Food Sci., vol. 84, no. 8, pp. 2330-2336, Aug, doi: 10.1111/1750-3841.14725. Retrieved from DOI:

S. A. Mahdy, Q. J. Raheed, and P. T. Kalaichelvan (2012), "Antimicrobial activity of zero-valent iron nanoparticles," Int. J. Mod. Eng. Res., vol. 2, no. 1, pp. 578-581, doi:

S. Rojas et al. (2016), "Nanoscaled Zinc Pyrazolate Metal-Organic Frameworks as Drug-Delivery Systems," Inorg. Chem., vol. 55, no. 5, pp. 2650-2663, Mar, doi: 10.1021/acs.inorgchem.6b00045. Retrieved from DOI:

S. Vrignaud, J.-P. Benoit, and P. Saulnier (2011), "Strategies for the nanoencapsulation of hydrophilic molecules in polymer-based nanoparticles," Biomaterials, vol. 32, no. 33, pp. 8593-8604, Nov, doi: 10.1016/j.biomaterials.2011.07.057. Retrieved from DOI:

S.-J. Suet al. (2005), "The novel targets for anti-angiogenesis of genistein on human cancer cells," Biochem. Pharmacol., vol. 69, no. 2, pp. 307-318, Jan, doi: 10.1016/j.bcp.2004.09.025. Retrieved from DOI:

T. Kruk, K. Szczepanowicz, J. Stefańska, R. P. Socha, and P. Warszyński (2015), "Synthesis and antimicrobial activity of monodisperse copper nanoparticles," Colloids Surf. B Biointerfaces, vol. 128, pp. 17-22, Apr, doi: 10.1016/j.colsurfb.2015.02.009. Retrieved from DOI:

W. H. De Jong and P. J. A. Borm (2008), "Drug delivery and nanoparticles:applications and hazards," Int. J. Nanomedicine, vol. 3, no. 2, pp. 133-149, doi: 10.2147/ijn.s596. Retrieved from DOI:

W. Yin, W. Chai, K. Wang, W. Ye, Y. Rui, and B. Tang (2019), "Facile synthesis of Sb nanoparticles anchored on reduced graphene oxides as excellent anode materials for lithium-ion batteries," J. Alloys Compd., vol. 797, pp. 1249-1257, doi: Retrieved from DOI:




How to Cite

Chatterjee, D., Mallick, S. B., Hazra, D., & Pal, R. (2021). DESIGNING OF NANOCOMPOSITE MODEL STRUCTURE USING GLYCITEIN AND GENISTEIN WITH TWELVE DIFFERENT METAL ATOMS USING IN SILICO METHOD. International Journal of Engineering Technologies and Management Research, 8(11), 14–22.