• Gunawan Department of Chemistry, Faculty of Science and Mathematics, Diponegoro University, Central Java, Indonesia
  • A. Haris Department of Chemistry, Faculty of Science and Mathematics, Diponegoro University, Central Java, Indonesia
  • E. Pratista Department of Chemistry, Faculty of Science and Mathematics, Diponegoro University, Central Java, Indonesia
Keywords: Cu2O, Photocurrent, Methyl Orange, And Degradation.


A copper oxide thin film was synthesized through a copper sheet annealing process that was carried out using a gas stove, furnace and 1000 W tungsten . The product and its response were measured using a and then characterized by XRD, SEM and EDX. Furthermore, the copper oxide was applied as a photocathode in a cell with Platinum (Pt) as the anode for methyl orange degradation, and the thin film annealed at 60 sec produced the highest current density. According to XRD and EDX results, copper oxide structure was dominated by Cu2O, while SEM showed the presence of a Cu2O porous surface. Methyl orange solution degradation also showed the best result for the copper oxide annealed at 60 sec and in all pH variations, while the best degradation was obtained at pH 1.


Download data is not yet available.


Abd-Ellah, M., Thomas, J. P., Zhang, L. & Tong, K. (2016). Solar Energy Materials & Solar Cells Enhancement Of Solar Cell Performance Of P-Cu2o/N-Zno-Nanotube And Nanorod Heterojunction Devices. Sol. Energy Mater. Sol. Cells 152, 87–93. DOI:

Aggarwal, S. (2016). Photo Catalytic Degradation Of Methyl Orange By Using Cds Semiconductor Nanoparticles Photo Catalyst. Int. Res. J. Eng. Technol 3, 2–6.

Bi, J., Wu, S., Xia, H., Li, L. & Zhang, S. (2019). Synthesis of monodisperse single-crystal Cu2O spheres and their application in generating structural colors. Journal of Materials Chemistry C 7(15), 4551–4558. Retrieved from 10.1039/c9tc00809h DOI:

Cui, Z., Yang, H. & Zhao, X. (2017). Enhanced Photocatalytic Performance Of G-C3n4/Bi4ti3o12 Heterojunction Nanocomposites. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol 229, 160–172. DOI:

Eskandari, A., Sangpour, P. & Vaezi, M.R. (2014). Hydrophilic Cu2O nanostructured thin films prepared by facile spin coating method: Investigation of surface energy and roughness. Materials Chemistry and Physics 147(3), 1204–1209. Retrieved from 10.1016/j.matchemphys.2014.07.008 DOI:

Guzmán, H., Farkhondehfal, M. A., Tolod, K. R., Hernández, S. & Russo, N. (2019). Photo/Electrocatalytic Hydrogen Exploitation For Co2 Reduction Toward Solar Fuels Production. Solar Hydrogen Production: Processes, Systems And Technologies 365–418. DOI:

Ismail, M., Akhtar, K., Khan, M.I., Kamal, T., Khan, M. A., M. Asiri, A., Seo, J. & Khan, S. B. (2019). Pollution, Toxicity and Carcinogenicity of Organic Dyes and their Catalytic Bio-Remediation. Current Pharmaceutical Design 25(34), 3645–3663. Retrieved from 10.2174/1381612825666191021142026 DOI:

John, N., Tharayil, N. J. & Somaraj, M. (2017). Photocatalytic degradation of methyl orange using biologically enhanced tin oxide nanoparticles under UV-irradiation. Journal of Materials Science: Materials in Electronics 28(8), 5860–5865. Retrieved from 10.1007/s10854-016-6258-7 DOI:

Kasinathan, K., Kennedy, J., Elayaperumal, M., Henini, M. & Malik, M. (2016). Photodegradation of organic pollutants RhB dye using UV simulated sunlight on ceria based TiO2 nanomaterials for antibacterial applications. Scientific Reports 6(1), 1–12. Retrieved from 10.1038/srep38064 DOI:

Khan, M. S. J., Kamal, T., Ali, F., Asiri, A. M. & Khan, S. B. (2019). Chitosan-coated polyurethane sponge supported metal nanoparticles for catalytic reduction of organic pollutants. International Journal of Biological Macromolecules 132, 772–783. Retrieved from 10.1016/j.ijbiomac.2019.03.205 DOI:

Koiki, B. A. & Arotiba, O. A. (2020). Cu2O as an emerging semiconductor in photocatalytic and photoelectrocatalytic treatment of water contaminated with organic substances: a review. RSC Advances 10(60), 36514–36525. Retrieved from 10.1039/d0ra06858f DOI:

Kuriakose, S., Avasthi, D. K. & Mohapatra, S. (2015). Effects of swift heavy ion irradiation on structural, optical and photocatalytic properties of ZnO–CuO nanocomposites prepared by carbothermal evaporation method. Beilstein Journal of Nanotechnology 6(1), 928–937. Retrieved from 10.3762/bjnano.6.96 DOI:

Kuriakose, S., Sahu, K., Khan, S. A., Tripathi, A., Avasthi, D.K. & Mohapatra, S. (2017). Facile synthesis of Au-ZnO plasmonic nanohybrids for highly efficient photocatalytic degradation of methylene blue. Optical Materials 64, 47–52. Retrieved from 10.1016/j.optmat.2016.11.035 DOI:

Kushwaha, A. K., Gupta, N. & Chattopadhyaya, M.C. (2014). Removal of cationic methylene blue and malachite green dyes from aqueous solution by waste materials of Daucus carota. Journal of Saudi Chemical Society 18(3), 200–207. Retrieved from 10.1016/j.jscs.2011.06.011 DOI:

Luo, J., Steier, L., Son, M.-K., Schreier, M., Mayer, M. T. & Grätzel, M. (2016). Cu2O Nanowire Photocathodes for Efficient and Durable Solar Water Splitting. Nano Letters 16(3), 1848–1857. Retrieved from 10.1021/acs.nanolett.5b04929 DOI:

Mageshwari, K., Nataraj, D., Pal, T., Sathyamoorthy, R. & Park, J. (2015). Improved photocatalytic activity of ZnO coupled CuO nanocomposites synthesized by reflux condensation method. Journal of Alloys and Compounds 625, 362–370. Retrieved from 10.1016/j.jallcom.2014.11.109 DOI:

Mahmood, A., Tezcan, F. & Kardaş, G. (2017). Photoelectrochemical characteristics of CuO films with different electrodeposition time. International Journal of Hydrogen Energy 42(36), 23268–23275. Retrieved from 10.1016/j.ijhydene.2017.06.003 DOI:

Ma, Q.-B., Hofmann, J. P., Litke, A. & Hensen, E. J.M. (2015). Cu2O photoelectrodes for solar water splitting: Tuning photoelectrochemical performance by controlled faceting. Solar Energy Materials and Solar Cells 141, 178–186. Retrieved from 10.1016/j.solmat.2015.05.025 DOI:

McMichael, S., Fernández-Ibáñez, P. & Byrne, J. A. (2021). A Review of Photoelectrocatalytic Reactors for Water and Wastewater Treatment. Water. MDPI AG 13, 1198 Retrieved from DOI:

Muthirulan, P., Nirmala Devi, C. & Meenakshi Sundaram, M. (2017). Synchronous role of coupled adsorption and photocatalytic degradation on CAC–TiO 2 composite generating excellent mineralization of alizarin cyanine green dye in aqueous solution. Arabian Journal of Chemistry 10, S1477–S1483. Retrieved from 10.1016/j.arabjc.2013.04.028 DOI:

Muthukumaran, M., Gnanamoorthy, G., Varun Prasath, P., Abinaya, M., Dhinagaran, G., Sagadevan, S., Mohammad, F., Oh, W. C. & Venkatachalam, K. (2020). Enhanced photocatalytic activity of Cuprous Oxide nanoparticles for malachite green degradation under the visible light radiation. Materials Research Express 7(1), 015038. Retrieved from 10.1088/2053-1591/ab63fb DOI:

Oku, T., Yamada, T., Fujimoto, K. & Akiyama, T. (2014). Microstructures and Photovoltaic Properties of Zn(Al)O/Cu2O-Based Solar Cells Prepared by Spin-Coating and Electrodeposition. Coatings. MDPI AG 4, 203–213 Retrieved from DOI:

Rameshbabu, R., Kumar, N., Karthigeyan, A. & Neppolian, B. (2016). Visible light photocatalytic activities of ZnFe 2 O 4 /ZnO nanoparticles for the degradation of organic pollutants. Materials Chemistry and Physics 181, 106–115. Retrieved from 10.1016/j.matchemphys.2016.06.040 DOI:

Ramezani, S., Zahedi, P., Bahrami, S.-H. & Nemati, Y. (2019). Microfluidic Fabrication of Nanoparticles Based on Ethyl Acrylate-Functionalized Chitosan for Adsorption of Methylene Blue from Aqueous Solutions. Journal of Polymers and the Environment 27(8), 1653–1665. Retrieved from 10.1007/s10924-019-01463-6 DOI:

Safarvand, D., Naser, I., Samipourgiri, M. & Arjmand, M. (2020). Efficient Photoelectrocatalytic Degradation of BTEX Using TiO2/CuO/Cu2O Nanorod-Array Film as the Photoanode and MWCNT/GO/Graphite Felt as the Photocathode. Electrocatalysis 11(2), 188–202. Retrieved from 10.1007/s12678-019-00576-9 DOI:

Sahu, K., Choudhary, S., Khan, S. A., Pandey, A. & Mohapatra, S. (2019). Thermal evolution of morphological, structural, optical and photocatalytic properties of CuO thin films. Nano-Structures & Nano-Objects 17, 92–102. Retrieved from 10.1016/j.nanoso.2018.12.005 DOI:

Sahu, K., kuriakose, S., Singh, J., Satpati, B. & Mohapatra, S. (2018). Facile synthesis of ZnO nanoplates and nanoparticle aggregates for highly efficient photocatalytic degradation of organic dyes. Journal of Physics and Chemistry of Solids 121, 186–195. Retrieved from 10.1016/j.jpcs.2018.04.023 DOI:

Sahu, K., Satpati, B. & Mohapatra, S. (2019). Facile Synthesis and Phase-Dependent Catalytic Activity of Cabbage-Type Copper Oxide Nanostructures for Highly Efficient Reduction of 4-Nitrophenol. Catalysis Letters 149(9), 2519–2527. Retrieved from 10.1007/s10562-019-02817-4 DOI:

Saikia, L., Bhuyan, D., Saikia, M., Malakar, B., Dutta, D. K. & Sengupta, P. (2015). Photocatalytic performance of ZnO nanomaterials for self sensitized degradation of malachite green dye under solar light. Applied Catalysis A: General 490, 42–49. Retrieved from 10.1016/j.apcata.2014.10.053 DOI:

Sharma, S. & Bhattacharya, (2017). A Drinking Water Contamination And Treatment Techniques. Appl. Water Sci 7, 1043–1067. DOI:

Singh, J., Sahu, K., Pandey, A., Kumar, M., Ghosh, T., Satpati, B., Som, T., Varma, S., Avasthi, D.K. & Mohapatra, S. (2017). Atom beam sputtered Ag-TiO 2 plasmonic nanocomposite thin films for photocatalytic applications. Applied Surface Science 411, 347–354. Retrieved from 10.1016/j.apsusc.2017.03.152 DOI:

Singh, J., Satpati, B. & Mohapatra, S. (2017). Structural, Optical and Plasmonic Properties of Ag-TiO2 Hybrid Plasmonic Nanostructures with Enhanced Photocatalytic Activity. Plasmonics 12(3), 877–888. Retrieved from 10.1007/s11468-016-0339-6 DOI:

Singh, J. (2015). Thermal Evolution Of Structural, Optical And Photocatalytic Properties Of Tio2 Nanostructures. Adv. Mater. Lett 6(10), 924–929. DOI:

Sullivan, I., Zoellner, B. & Maggard, P. A. (2016). Copper(I)-Based p-Type Oxides for Photoelectrochemical and Photovoltaic Solar Energy Conversion. Chemistry of Materials 28(17), 5999–6016. Retrieved from 10.1021/acs.chemmater.6b00926 DOI:

Vequizo, J.J.M., Zhang, C. & Ichimura, M. (2015). Fabrication of Cu2O/Fe–O heterojunction solar cells by electrodeposition. Thin Solid Films 597, 83–87. Retrieved from 10.1016/j.tsf.2015.11.034 DOI:

Wang, W., Zhang, W., Meng, S., Jia, L., Tan, M., Hao, C., Liang, Y., Wang, J. & Zou, B. (2016). Enhanced photoelectrochemical water splitting and photocatalytic water oxidation of Cu2O nanocube-loaded BiVO4 nanocrystal heterostructures. Electronic Materials Letters 12(6), 753–760. Retrieved from 10.1007/s13391-016-6224-9 DOI:

Wick, R. & Tilley, S. D. (2015). Photovoltaic and Photoelectrochemical Solar Energy Conversion with Cu2O. The Journal of Physical Chemistry C 119(47), 26243–26257. Retrieved from 10.1021/acs.jpcc.5b08397 DOI:

Yang, Y., Xu, D., Wu, Q. & Diao, P. (2016). Cu2O/CuO Bilayered Composite as a High-Efficiency Photocathode for Photoelectrochemical Hydrogen Evolution Reaction. Scientific Reports 6(1), 1–13. Retrieved from 10.1038/srep35158 DOI:

Yu, C., Shu, Y., Zhou, X., Ren, Y. & Liu, Z. (2018). Multi-Branched Cu2o Nanowires For Photocatalytic Degradation Of Methyl Orange. Mater. Res. Express 5, 35046. DOI:

How to Cite