ARSENIC, NICKEL AND LEADREMOVAL FROM UNDERGROUND WELLS BY ADSORPTION ON LATERITE SOIL

  • Sinaly OUATTARA Unité de Biotechnologie et Ingénierie de l’Environnement, Unité de Formation et de Recherche en Sciences et Gestion de l’Environnement (UFR-SGE) Université Nangui Abrogoua, 02 BP 801 Abidjan 02, Côte d’Ivoire
  • A. Lydie C. MANGOUA-ALLALI Unité de Biotechnologie et Ingénierie de l’Environnement, Unité de Formation et de Recherche en Sciences et Gestion de l’Environnement (UFR-SGE) Université Nangui Abrogoua, 02 BP 801 Abidjan 02, Côte d’Ivoire
  • A. B. AMA-CAUPHYS Unité de Biotechnologie et Ingénierie de l’Environnement, Unité de Formation et de Recherche en Sciences et Gestion de l’Environnement (UFR-SGE) Université Nangui Abrogoua, 02 BP 801 Abidjan 02, Côte d’Ivoire
  • Lacina COULIBALY Unité de Biotechnologie et Ingénierie de l’Environnement, Unité de Formation et de Recherche en Sciences et Gestion de l’Environnement (UFR-SGE) Université Nangui Abrogoua, 02 BP 801 Abidjan 02, Côte d’Ivoire
Keywords: Adsorption On Laterite, Arsenic, Côte d’Ivoire, Lead, Nickel, Well Water

Abstract

The pollution by heavy metal in the environment, particularly groundwater, constitutes an environmental problem and health in Côte d’Ivoire. Among methods used for removal heavy metals, adsorption by natural absorbent such as a laterite is effective and cheap when compared to other methods. So, this study evaluates the laterite reactor performance for effective removal of heavy metals viz., arsenic (As), nickel (Ni) and lead (Pb) from real-life groundwater. And adsorption of heavy metals was performed with laterite of different particle sizes, viz. coarse grain size of laterite (LRCOG) and laterite granules (LRG). The results obtained showed that the percentages of removal of heavy metal are higher than the size of the laterite. As, Ni and Pb removal are 98.3 ± 0.4%, 99.2 ± 0.2% and 96.1 ± 1.1% respectively in LRCOG effluents. With the laterite in form of granules, percentage removal were of 98.6 ± 0.3% for As that of the Ni is of 99.7 ± 0.2% and 97.9 ± 0.5 % for Pb. The adsorption of heavy metal on the two types of laterite particle size is in the same order of effectiveness: Ni˃As˃Pb.

Downloads

Download data is not yet available.

References

Alhawas, M., Alwabel, M., Ghoneim, A., Alfarraj, A.& Sallam, A. (2013). Removal of nickel from aqueous solution by low-cost clay adsorbents. Proceedings of the International Academy of Ecology and Environmental Sciences, 3(2), 160-169

Altundogan, H. S., Altundogan, S., Tümen, F. & Bildik, M. (2002). Arsenic adsorption from aqueous solutions by activated red mud.Waste Management, 22, 357-363. DOI: https://doi.org/10.1016/S0956-053X(01)00041-1

Bataillard, P., Guérin , V., Lions J., Girondelot, B., Laboudigue, A., Van der Lee, J., Raepsaet, C. & Gallien, J P. (2010). Mobilité des éléments-traces dans un anthroposol développé sur des sédiments de curage fortement contaminés. Etude et Gestion des Sols, 17(3-4), 239-254.

Chouchane, T. (2009). Synthèse, caractérisation et application de matériaux catalytiques. Thèse de doctorat en Chimie Physique, Université Badji Mokhtar-Annaba, Algérie, 188p.

Cissé, F. S., Faye, S., Wohnlich, S. & Gaye, C. B. (2004). An assessment of the risk associated with urban development in the Thiaroye area (Senegal). Environment Geological, 45, 312-322. DOI: https://doi.org/10.1007/s00254-003-0887-x

Collin, M. L. & Melloul, A. J. (2003). Assessing groundwater vulnerability to pollution to promote sustainable urban and rural development.Journal of cleaner production, 11(7) ,727-736. DOI: https://doi.org/10.1016/S0959-6526(02)00131-2

Coulibaly, S. L (2014). Abattement des phosphates des eaux usées par adsorption sur des géomatériaux constitués de latérite, grès et schistes ardoisiers. Thèse de Doctorat en Ingénierie Environnementale et Assainissement, Université Lorraine (France)-Université Nangui Abrogoua (Côte d’Ivoire), 213p.

De Haas, D. W., Wentzel, M. C. & Ekama, G. A. (2001) The use of simultaneous chemical precipitation in modified activated sludge systems exhibiting biological excess phosphate removal part 6: modeling of simultaneous chemical-biological P removal–review of existing models. Water SA, 27 (2), 135-150.

Garret, G. G. (2000). Natural sources of metals to the environment. Human and Ecological Risk Assessment, 6(6), 945-963. DOI: https://doi.org/10.1080/10807030091124383

Godfrin, J. M. & Bladel, R. V. (1990). Influence du pH sur l’adsorption du cuivre et du zinc par les sols. Sciences du sol, 28 (1), 15-26.

Ilavský, J. & Barloková, D. (2012). The use of granular iron-bases sorption materials for nickel removal from water. Polish Journal of Environmental Studies, 21(5), 1229-1236.

Kannan, N. & Sundaram, M. M. (2001). Kinetics and mechanism of removal of methylene blue by adsorption on various carbons- a comparative study. Dyes and Pigments, 51, 25-40. DOI: https://doi.org/10.1016/S0143-7208(01)00056-0

Kouadio, G., Dongui, B. &Trokourey, A. (2000). Détermination de la pollution chimique des eaux de la zone de la décharge d’Akouédo (Abidjan-Côte d’Ivoire). Revue desSciences et Technologies, 1, 33-41.

Koua-Koffi, N. A. A. (2014). Assainissement, ressources en eau et risques sanitaires dans les villages d’Akouédo et M’badon, district d’Abidjan. Mémoire de Master, Université Nangui Abrogoua, Abidjan, Côte d’Ivoire, 56p.

Lawane, A., Pantet, A., Vinai, R. & Thomassin, J. H. (2011). Caractérisation des matériaux latéritiques pour une meilleure utilisation en Afrique. 20eme Congrès Français de Mécanique, 6p.

Lenoble, V. (2003) Elimination de l'Arsenic pour la production d'eau potable : oxydation chimique et adsorption sur des substrats solides innovants. Thèse de doctorat en Chimie et Microbiologie de l'eau, Université de Limoges, France, 165p.

Maji, S. K., Pal, A. & Pal, T. (2006). Arsenic removal from real-life groundwater by adsorption on lateritic soil. Journal of Hazardous Materials, 151, 811-820. DOI: https://doi.org/10.1016/j.jhazmat.2007.06.060

Manceau, A., Charlet, L., Boisset, M. C., Didier, B. & Spadini, L. (1992). Sorption and speciation of heavy metals on hydrous Fe and Mn Oxides. From microscopic to macroscopic. Applied Clay Science, 7, 201-223. DOI: https://doi.org/10.1016/0169-1317(92)90040-T

Nkhuwa, D. C. W. (2003). Human activities and threats of chronic epidemics in a fragile geologic environment. Physics and Chemistry of the Earth, 28, 1139-1149. DOI: https://doi.org/10.1016/j.pce.2003.08.035

Pavel, J., Pavel, M. & Lukắs, T. (2007). Sorption of ionic dyes onto untreated low-rank coaloxihumolite: A Kinetic study. Dyes and Pigments, 74, 363- 370. DOI: https://doi.org/10.1016/j.dyepig.2006.02.017

Quantin, C., Becquer, T. & Berthelin, J. (2002). Mn-oxide: a major source of easily mobilisable Co and Ni under reducing conditions in New Caledonia Ferrasols. Surface Geosciences, 334, 273-278. DOI: https://doi.org/10.1016/S1631-0713(02)01753-4

Rancourt, D. G. (1993). Mossbauer spectroscopy of tetrahedral Fe3+ in trioctahedral micas- Reply. American Mineralogist, 78, 669-67l.

Saha, J. C., Dikshit, A. K., Bandyopadhyay, M., Saha, K. C. (1999). A review of arsenic poisoning and its effects on human health. Critical Reviews in Environmental Science and Technology29, 281–313. DOI: https://doi.org/10.1080/10643389991259227

Sedira, N. (2013). Etude de l'adsorption des métaux lourds sur un charbon actif issu de noyaux de dattes. Mémoire de Magister en Chimie Physique et Analytique, Université Mohamed Chérif Messaadia Souk-Ahras, Algérie, 119p.

Sorgho, B., Paré, S., Guel, B., Zerbo, L., Traoré, K. & Persson, I. (2011). Etude d’une argile locale du Burkina Faso à des fins de décontamination en Cu2+, Pb2+ et Cr3+ . Journal de la Société Ouest-Africaine de Chimie, 31, 49-59.

Tchobanoglous, G., Burton, F.L. & Stensel, H. D. (2003) Wastewater Engineering: treatment disposal and Reuse. 4th edition, McGraw-Hill, New York, USA. 1334p.

Tessier, A., Campbell, P. G. C. & Carignam, R. (1990). Influence du pH sur la spéciation et la biodisponibilité des métaux. T.S.M. L’eau, (2), 69-73.

WHO (2004). Fluoride and arsenic in drinking water. Inheriting the World: The Atlas of Children's Health and the Environment.WHO Publication. 33p.

Ziati, M., Hazourli, S., Nouacer, S., Khelaifia, F. Z. & Merzoug, N. N. (2013). Adsorption de l’arsenic (III) sur un résidu naturel ligno-cellulosique valorisé en charbon actif - exemple des noyaux de dattes.Lebanese Science Journal, 14(1), 73-85.

Zondje, P. B. B. (2008). Caractérisation des sols latéritiques utilisés en construction routière : cas de la région de l'Agneby (Côte d'Ivoire). Thèse de doctorat en Géotechnique, Ecole nationale des Ponts et Chaussées, Paris, France. 144p.

Published
2018-02-28
How to Cite
OUATTARA, S., MANGOU-ALLALI, A., AMA-CAUPHYS, A., & COULIBALY, L. (2018). ARSENIC, NICKEL AND LEADREMOVAL FROM UNDERGROUND WELLS BY ADSORPTION ON LATERITE SOIL . International Journal of Engineering Technologies and Management Research, 5(2), 229-238. https://doi.org/10.29121/ijetmr.v5.i2.2018.167