ESTIMATION OF PROCESS CAPABILITY IN BAYESIAN PARADIGM

Authors

  • Chetan Malagavi Department of Mathematics, GITAM Deemed to be University, Bengaluru-561203. Karnataka, India and Research Scholar Department of Statistics, Karnatak University, Dharwad-580003. Karnataka, India.
  • Sharada V. Bhat Department of Statistics. Karnatak University, Dharwad-580003. Karnataka State, India.

DOI:

https://doi.org/10.29121/ijetmr.v9.i7.2022.1193

Keywords:

Bayesian Estimator, Conjugate Prior, Posterior Distribution, Process Capability Index, Process Variance

Abstract

The process capability index (PCI),

Downloads

Download data is not yet available.

References

Bhat, S. V., and Gokhale, K. D., (2014). Posterior Control Charts for Process Variance Based on Various Priors. Journal of the Indian Society for probability and statistics. 15, 52-66. https://www.researchgate.net/publication/344429718_POSTERIOR_CONTROL_CHARTS_FOR_PROCESS_VARIANCE_BASED_ON_VARIOUS_PRIORS

Bhat, S. V., and Gokhale, K. D., (2016). Posterior Control Chart for Standard Deviation based on Conjugate Prior. Journal of Indian Statistical Association. 54(1-2), 157- 166. https://www.researchgate.net/publication/344429584_Posterior_Control_Chart_for_standard_deviation_based_on_Conjugate_Prior

Chan, L. K., Cheng, S. W., and Spiring, F. A., (1988). A New Measure of Process Capability: Journal of Quality Technology. 20(3), 162-175. https://doi.org/10.1080/00224065.1988.11979102 DOI: https://doi.org/10.1080/00224065.1988.11979102

Cheng, S. W., and Spiring, F. A., (1989). Assessing process capability: a Bayesian approach, IIE Transactions. 97-98. https://doi.org/10.1080/07408178908966212 DOI: https://doi.org/10.1080/07408178908966212

Gokhale, K. D. (2017). Studies in statistical quality control using prior information. An Unpublished thesis submitted to the Karnatak, University Dharwad. https://shodhganga.inflibnet.ac.in/handle/10603/221506

Kane, V. K. (1986). Process capability indices, Journal of Quality Technology, 41-52. https://doi.org/10.1080/00224065.1986.11978984 DOI: https://doi.org/10.1080/00224065.1986.11978984

Kotz, S., Johnson, N. L. (2002). Process capability indices--a review, 1992-2000. Journal of Quality Technology, 34(1), 1-19. https://doi.org/10.1080/00224065.2002.11980119 DOI: https://doi.org/10.1080/00224065.2002.11980119

Montgomery, D. C. (1996). Introduction to statistical quality control (6th Edition ed.). John Wiley and Sons. http://ie.sharif.edu/~qc/Introduction%20to%20statistical%20qulity%20control,%206th%20edition.pdf

Pearn, W. L. and Wu, C. W. (2005). A Bayesian approach for assessing process precision based on multiple samples, European Journal of Operational Research. 165(3), 685-695. https://doi.org/10.1016/j.ejor.2004.02.009 DOI: https://doi.org/10.1016/j.ejor.2004.02.009

Shiau, J. H., Chiang, C., and Hung, H. (1999). A Bayesian procedure for process capability assessment, Quality and Reliability Engineering International 15, 369-378. https://doi.org/10.1002/(SICI)1099-1638(199909/10)15:5<369::AID-QRE262>3.0.CO;2-R DOI: https://doi.org/10.1002/(SICI)1099-1638(199909/10)15:5<369::AID-QRE262>3.0.CO;2-R

Spiring, F. A. (1995). Process capability: a total quality management tool, Total Quality Management 6, 21-33. https://doi.org/10.1080/09544129550035558 DOI: https://doi.org/10.1080/09544129550035558

Wilson, E. B., Hilferty, M. M. (1931). The Distribution of Chi-Square. Proceedings of the National Academy of Sciences. 17, 684-688. https://doi.org/10.1073/pnas.17.12.684 DOI: https://doi.org/10.1073/pnas.17.12.684

Downloads

Published

2022-07-19

How to Cite

Malagavi, C. ., & Bhat, S. V. (2022). ESTIMATION OF PROCESS CAPABILITY IN BAYESIAN PARADIGM. International Journal of Engineering Technologies and Management Research, 9(7), 8–19. https://doi.org/10.29121/ijetmr.v9.i7.2022.1193