• Ali H. Algarni Mechanical Engineering Dept., College of Engineering and Islamic Architecture, Umm Al-Qura University, Makkah, Saudi Arabia.
  • Mohamed H. Mohamed Mechanical Power Engineering Department, Faculaty of Engineering EL-Mattaria, Helwan University, P.O.Box : 11718, Cairo, Egypt.




PV, Power Electronics, On-Grid, Inverter, Battery Charger, Back-up Generator, PVsyst


According to Saudi Arabia vision of 2030, the Kingdom of Saudi Arabia is undergoing through various stages and working on projects to make their airports environment friendly and pollution free. For this, they are working to install solar panels and make electricity to meet up their requirements. In the Kingdom of Saudi Arabia, all the airports will be transformed in environmental friendly airports. We are working on the project to install a solar PV system in Jeddah International airport. It is taken the values for electricity consumption of the airport and designed two different systems: On-Grid and OFF-Grid and implement them with the desired requirements. Using PVsyst software, the On-grid design has been simulated as well as the economic analysis has been calculated. The results indicated that cost analysis shows that energy produced will cost 0.073USD/kWh. Detailed economic analysis of ON-Grid system is introduced and get On-grid design system of PV more beneficial. This system provides our investment back within 4.3 years and its environment friendly obvious.


Download data is not yet available.


Al-Zahrani, A. Bindayel, A. Al-Rished, A. Perdichizzi, A. Franchini, G. & Ravelli, S. (2017). Comparative analysis of Different CSP plant configurations in Saudi Arabia. Saudi Arabia Smart Grid Conference, SASG. https://doi.org/10.1109/SASG.2016.7849679

Alawaji, S. H. & Hasnain, S. M. (2010). Role of Solar Energy Research in Transferring of Technology to Saudi Arabia, 21(10), 923-934. https://doi.org/10.1080/00908319950014290

Almasri, R. A. & Almarshoud, A. (2017). Feasibility of Using Evacuated Tube Solar Water Heaters in Saudi Arabia | Semantic Scholar. https://www.semanticscholar.org/paper/Feasibility-of-Using-Evacuated-Tube-Solar-Water-in-Almasri-Almarshoud/ce180b8369dd0f34391986f614a8a4533d6e0e83

Apribowo, C. H. B. Nizam, M. Pramono, S. Maghfiroh, H. & Hakim, K. (2021). Design and Analysis Performance Solar Power Plant 15 kW By Maximizing Final Yield and Performance Ratio In Small-Medium Office. IOP Conference Series: Materials Science and Engineering. https://doi.org/10.1088/1757-899X/1096/1/012082

Bangun, G. M. Nabila, N. Budiansyah, M. A. Alvianingsih, G. & Utomo, A. R. (2019). Study of Battery Sizing for Solar Power Plant. IOP Conference Series: Earth and Environmental Science, 353(1). https://doi.org/10.1088/1755-1315/353/1/012004

Cushing, S. K. & Wu, N. (2013). Plasmon-enhanced solar energy harvesting. Electrochemical Society Interface, 22(2), 63-67. https://doi.org/10.1149/2.F08132if

Dieckmann, S. & Dersch, J. (2017). Simulation of hybrid solar power plants. AIP Conference Proceedings, 1850(1). https://doi.org/10.1063/1.4984539

Dominio, F. (2015). Techno-Economic Analysis of Hybrid PV-CSP Power Plants. Master's Thesis. https://upcommons.upc.edu/handle/2117/82170

Farahat, A. Kambezidis, H. D. Almazroui, M. & Ramadan, E. (2021). Solar Potential in Saudi Arabia for Southward-Inclined Flat-Plate Surfaces. Applied Sciences , 11(9), 4101. https://doi.org/10.3390/app11094101

Franklin, E.K.V. (2019). Calculations for a Grid-Connected Solar Energy System. Cooperative Extrension, June, 1-8. https://extension.arizona.edu/sites/extension.arizona.edu/files/pubs/az1782-2019.pdf

García-Santacruz, C. Galván, L. Carrasco, J. M. & Galván, E. (2021). Sizing and Management of Energy Storage Systems in Large-Scale Power Plants Using Price Control and Artificial Intelligence. 14(11), 3296. https://doi.org/10.3390/en14113296

Hepbasli, A. Sangeetha, S. (2014). Sizing of Solar PV Power Plant in Stand-Alone. International Journal of Engineering Research & Technology (IJERT), 3(6), 51-55. https://www.ijert.org/sizing-of-solar-pv-power-plant-in-stand-alone-operation

Hindocha, K. & Shah, S. (2020). Design of 50 MW Grid Connected Solar Power Plant. International Journal of Engineering Research And, (4). https://doi.org/10.17577/IJERTV9IS040762

IFC. (2015). Utility-Scale Solar Photovoltaic Power Plants. 35-39. https://www.ifc.org/wps/wcm/connect/topics_ext_content/ifc_external_corporate_site/sustainability-at-ifc/publications/publications_utility-scale+solar+photovoltaic+power+plants

Larchet, K. (2015). Solar PV-CSP Hybridisation for Baseload Generation : A Techno-economic Analysis for the Chilean Market. https://www.diva-portal.org/smash/record.jsf?pid=diva2%3A848357&dswid=-3640

Li, Y. Hamed, E. A. Zhang, X. Luna, D. Lin, J. S. Liang, X. & Lee, I. (2020). Feasibility of Harvesting Solar Energy for Self-Powered Environmental Wireless Sensor Nodes. 9(12), 2058. https://doi.org/10.3390/electronics9122058

Li, Z. (2018). The Optimization of Solar Energy Harvesting in WSN. https://doi.org/10.1155/2018/9609735

Majumder, M. & Saha, A. K. (2016). Feasibility Model of Solar Energy Plants by ANN and MCDM Techniques. https://doi.org/10.1007/978-981-287-308-8

Moris, C. H. Guevara, M. T. C. Salmon, A. & Lorca, A. (2021). Comparison between Concentrated Solar Power and Gas-Based Generation in Terms of Economic and Flexibility-Related Aspects in Chile. 14(4), 1063. https://doi.org/10.3390/en14041063

Parrado, C. Girard, A. Simon, F. & Fuentealba, E. (2016). 2050 LCOE (Levelized Cost of Energy) projection for a hybrid PV (photovoltaic)-CSP (concentrated solar power) plant in the Atacama Desert, 94, 422-430. https://doi.org/10.1016/j.energy.2015.11.015

Petrollese, R. R. Damiani, A. Laroze, D. MacDonell, S. Jorquera, J. Sepúlveda, E. Feron, S. Llanillo, P. Labbe, F. Carrasco, J. Ferrer, J. & Torres, G. (2018). Effects of soiling on photovoltaic (PV) modules in the Atacama Desert. Scientific Reports, 8(1), 1-14. https://doi.org/10.1038/s41598-018-32291-8

Pop-Vadean, A. Pop, P. P. Latinovic, T. Barz, C. & Lung, C. (2017). Harvesting energy an sustainable power source, replace batteries for powering WSN and devices on the IoT. IOP Conference Series: Materials Science and Engineering, 200(1). https://doi.org/10.1088/1757-899X/200/1/012043

Roni, M. M. Hoque, I. U. & Ahmed, T. (2019). Comparative Study of Levelized Cost of Electricity (LCOE) for Concentrating Solar Power (CSP) and Photovoltaic (PV) Plant in the Southeastern Region of Bangladesh. 2nd International Conference on Electrical, Computer and Communication Engineering. https://doi.org/10.1109/ECACE.2019.8679173

Ruiz, H. S. Sunarso, A. Ibrahim-Bathis, K. Murti, S. A. & Budiarto, I. (2020). GIS-AHP Multi Criteria Decision Analysis for the optimal location of solar energy plants at Indonesia. Energy Reports, 6, 3249-3263. https://doi.org/10.1016/j.egyr.2020.11.198

Özcan, M. Ünlerşen, M. F. & Mutluer, M. (2018). Financial Analysis of The Solar Energy Plant Established In Konya Using The Production Data. https://www.researchgate.net/publication/343980470_Financial_Analysis_of_The_Solar_Energy_Plant_Established_In_Konya_Using_The_Production_Data




How to Cite

Algarni, A. H., & H. Mohamed, M. (2022). ON-GRID PERFORMANCE AND ECONOMIC ANALYSIS OF A SOLAR ENERGY PLANT FOR KING ABULAZIZ AIRPORT LOADS. International Journal of Engineering Technologies and Management Research, 9(5), 90–109. https://doi.org/10.29121/ijetmr.v9.i5.2022.1168