DESIGNING OF NANOCOMPOSITE MODEL STRUCTURE USING GLYCITEIN AND GENISTEIN WITH TWELVE DIFFERENT METAL ATOMS USING IN SILICO METHOD

Authors

  • Doyel Chatterjee Department of Microbiology and Biotechnology, Sister Nivedita University DG 1/ 2, Action Area–I, Kolkata–700156, West Bengal, India
  • Sukanya Basu Mallick Department of Microbiology and Biotechnology, Sister Nivedita University DG 1/ 2, Action Area–I, Kolkata–700156, West Bengal, India
  • Debraj Hazra Department of Microbiology and Biotechnology, Sister Nivedita University DG 1/ 2, Action Area–I, Kolkata–700156, West Bengal, India
  • Rajat Pal Department of Microbiology and Biotechnology, Sister Nivedita University DG 1/ 2, Action Area–I, Kolkata–700156, West Bengal, India

DOI:

https://doi.org/10.29121/ijetmr.v8.i11.2021.1058

Keywords:

Isoflavone, Nanoparticle, Glycitein, Genistein, And Avogadro Software

Abstract

Nanocomposite formulation is still in its evolving state. However due to its significant therapeutic applications it has grabbed the attention of many researchers. Isoflavonewhich is widely found in soy products have tremendous medicinal propertieswhen it interacts with nanoparticles can become a boon. Hence in this study, we are reporting the interaction properties/patterns of two ubiquitous flavones namelyGlycitein and Genistein forming a nanocomposite model with 12 different metals such as Gold, Silver, Palladium, Platinum, Ruthenium, Rhodium, Cadmium, Iron, Nickel, Zinc, Copper and Antimony based ontheir potency to form nanoparticles. To mimic the Nanocomposite, model the formulation was conducted in Avogadro Software for windows. Glycitein and Genistein create a possibility of selecting the most suitable -OH position that would serve as the binding site. On selection of the appropriate binding site the interaction amid two molecules of glycitein and genistein placed sidewise held together by above-mentioned metals also surrounded by the same metal on another vacant -OH position forming a close saturated structure subjected for interaction. Based on predominantly energy levels the least energy obtained model was Cadmium and the peak procured by Antimony making it least stable and unfavorable for the perceived result.

Downloads

Download data is not yet available.

References

B. Duncan, C. Kim, and V. M. Rotello (2010), "Gold nanoparticle platforms as drug and biomacromolecule delivery systems," J. Control. Release Off. J. Control. Release Soc., vol. 148, no. 1, pp. 122-127, Nov, doi: 10.1016/j.jconrel.2010.06.004. Retrieved from https://doi.org/10.1016/j.jconrel.2010.06.004 DOI: https://doi.org/10.1016/j.jconrel.2010.06.004

C. A. Dos Santos et al. (2014), "Silver nanoparticles: therapeutic uses, toxicity, and safety issues," J. Pharm. Sci., vol. 103, no. 7, pp. 1931-1944, Jul, doi: 10.1002/jps.24001. Retrieved from https://doi.org/10.1002/jps.24001 DOI: https://doi.org/10.1002/jps.24001

C. I. C. Crucho and M. T. Barros (2017), "Polymeric nanoparticles: A study on the preparation variables and characterization methods," Mater. Sci. Eng. C Mater. Biol. Appl., vol. 80, pp. 771-784, Nov, doi: 10.1016/j.msec.2017.06.004. Retrieved from https://doi.org/10.1016/j.msec.2017.06.004 DOI: https://doi.org/10.1016/j.msec.2017.06.004

C. P. Adams, K. A. Walker, S. O. Obare, and K. M. Docherty (2014), "Size-Dependent Antimicrobial Effects of Novel Palladium Nanoparticles," PLoS ONE, vol. 9, no. 1, p. e85981, Jan., doi: 10.1371/journal.pone.0085981. Retrieved from https://doi.org/10.1371/journal.pone.0085981 DOI: https://doi.org/10.1371/journal.pone.0085981

C. S. Levin et al. (2009), "Magnetic-plasmonic core-shell nanoparticles," ACS Nano, vol. 3, no. 6, pp. 1379-1388, Jun., doi: 10.1021/nn900118a. Retrieved from https://doi.org/10.1021/nn900118a DOI: https://doi.org/10.1021/nn900118a

C. Spagnuolo et al. (2015), "Genistein and cancer: current status, challenges, and future directions," Adv. Nutr. Bethesda Md, vol. 6, no. 4, pp. 408-419, Jul, doi: 10.3945/an.114.008052. Retrieved from https://doi.org/10.3945/an.114.008052 DOI: https://doi.org/10.3945/an.114.008052

D. C. Vitale, C. Piazza, B. Melilli, F. Drago, and S. Salomone (2013), "Isoflavones: estrogenic activity, biological effect and bioavailability," Eur. J. Drug Metab. Pharmacokinet., vol. 38, no. 1, pp. 15-25, Mar, doi: 10.1007/s13318-012-0112-y. Retrieved from https://doi.org/10.1007/s13318-012-0112-y DOI: https://doi.org/10.1007/s13318-012-0112-y

D. Guo et al. (2009), "Synergistic Effect of Functionalized Nickel Nanoparticles and Quercetin on Inhibition of the SMMC-7721 Cells Proliferation," Nanoscale Res. Lett., vol. 4, no. 12, pp. 1395-1402, Aug, doi: 10.1007/s11671- 009-9411-x. Retrieved from https://doi.org/10.1007/s11671-009-9411-x DOI: https://doi.org/10.1007/s11671-009-9411-x

D. Hazra, D. Chatterjee, and R. Pal (2020), "Designing of Nanocomposite model structure using Gallic acid and Ellagic acid with four different metals," Int. J. Life Sci., vol. 8, no. 3, Art. no. 3, Sep. Retrieved from https://doi.org/10.21467/anr.3.1.40-45 DOI: https://doi.org/10.21467/anr.3.1.40-45

G. Viauet al. (2003), "Ruthenium Nanoparticles: Size, Shape, and Self-Assemblies," Chem. Mater., vol. 15, no. 2, pp. 486-494, doi: 10.1021/cm0212109. Retrieved from https://doi.org/10.1021/cm0212109 DOI: https://doi.org/10.1021/cm0212109

H. K. K, N. Venkatesh, H. Bhowmik, and A. Kuila (2018), "Metallic Nanoparticle: A Review," Biomed. J. Sci. Tech. Res., vol. 4, no. 2, pp. 3765-3775, doi: 10.26717/BJSTR.2018.04.001011. Retrieved from https://doi.org/10.26717/BJSTR.2018.04.0001011 DOI: https://doi.org/10.26717/BJSTR.2018.04.0001011

J. Kim, T. Shirasawa, and Y. Miyamoto (2010), "The effect of TAT conjugated platinum nanoparticles on lifespan in a nematode Caenorhabditis elegans model," Biomaterials, vol. 31, no. 22, pp. 5849-5854, Aug., doi: 10.1016/j.biomaterials.2010.03.077. Retrieved from https://doi.org/10.1016/j.biomaterials.2010.03.077 DOI: https://doi.org/10.1016/j.biomaterials.2010.03.077

K. Shimoda and H. Hamada (2010), "Synthesis of beta-maltooligosaccharides of glycitein and daidzein and their anti-oxidant and anti-allergic activities," Mol. Basel Switz., vol. 15, no. 8, pp. 5153-5161, Jul., doi: 10.3390/molecules15085153. Retrieved from https://doi.org/10.3390/molecules15085153 DOI: https://doi.org/10.3390/molecules15085153

L. Qi, H. Cölfen, and M. Antonietti (2001), "Synthesis and Characterization of CdS Nanoparticles Stabilized by Double-Hydrophilic Block Copolymers," Nano Lett., vol. 1, no. 2, pp. 61-65, doi: 10.1021/nl0055052. Retrieved from https://doi.org/10.1021/nl0055052 DOI: https://doi.org/10.1021/nl0055052

L. Xu, D. Liu, D. Chen, H. Liu, and J. Yang (2019), "Size and shape controlled synthesis of rhodium nanoparticles," Heliyon, vol. 5, no. 1, p. e01165, Jan., doi: 10.1016/j.heliyon.2019.e01165. Retrieved from https://doi.org/10.1016/j.heliyon.2019.e01165 DOI: https://doi.org/10.1016/j.heliyon.2019.e01165

M. D. Hanwell, D. E. Curtis, D. C. Lonie, T. Vandermeersch, E. Zurek, and G. R. Hutchison (2012), "Avogadro: an advanced semantic chemical editor, visualization, and analysis platform," J. Cheminformatics, vol. 4, no. 1, p. 17, Aug, doi: 10.1186/1758-2946-4-17. Retrieved from https://doi.org/10.1186/1758-2946-4-17 DOI: https://doi.org/10.1186/1758-2946-4-17

M. Pabich and M. Materska (2019), "Biological Effect of Soy Isoflavones in the Prevention of Civilization Diseases," Nutrients, vol. 11, no. 7, p. E1660, Jul, doi: 10.3390/nu11071660. Retrieved from https://doi.org/10.3390/nu11071660 DOI: https://doi.org/10.3390/nu11071660

M. Thrane, P. V. Paulsen, M. W. Orcutt, and T. M. Krieger (2017), "Chapter 2 - Soy Protein: Impacts, Production, and Applications," in Sustainable Protein Sources, S. R. Nadathur, J. P. D. Wanasundara, and L. Scanlin, Eds. San Diego: Academic Press, pp. 23-45. doi: https://doi.org/10.1016/B978-0-12-802778-3.00002-0. Retrieved from https://doi.org/10.1016/B978-0-12-802778-3.00002-0 DOI: https://doi.org/10.1016/B978-0-12-802778-3.00002-0

P. Thangavel, A. Puga-Olguín, J. F. Rodríguez-Landa, and R. C. Zepeda (2019), "Genistein as Potential Therapeutic Candidate for Menopausal Symptoms and Other Related Diseases," Mol. Basel Switz., vol. 24, no. 21, p. E3892, Oct, doi: 10.3390/molecules24213892. Retrieved from https://doi.org/10.3390/molecules24213892 DOI: https://doi.org/10.3390/molecules24213892

R. Lu, Z. Zheng, Y. Yin, and Z. Jiang (2019), "Effect of Genistein on Cholesterol Metabolism-Related Genes in HepG2 Cell," J. Food Sci., vol. 84, no. 8, pp. 2330-2336, Aug, doi: 10.1111/1750-3841.14725. Retrieved from https://doi.org/10.1111/1750-3841.14725 DOI: https://doi.org/10.1111/1750-3841.14725

S. A. Mahdy, Q. J. Raheed, and P. T. Kalaichelvan (2012), "Antimicrobial activity of zero-valent iron nanoparticles," Int. J. Mod. Eng. Res., vol. 2, no. 1, pp. 578-581, doi: 10.1.1.416.6199.

S. Rojas et al. (2016), "Nanoscaled Zinc Pyrazolate Metal-Organic Frameworks as Drug-Delivery Systems," Inorg. Chem., vol. 55, no. 5, pp. 2650-2663, Mar, doi: 10.1021/acs.inorgchem.6b00045. Retrieved from https://doi.org/10.1021/acs.inorgchem.6b00045 DOI: https://doi.org/10.1021/acs.inorgchem.6b00045

S. Vrignaud, J.-P. Benoit, and P. Saulnier (2011), "Strategies for the nanoencapsulation of hydrophilic molecules in polymer-based nanoparticles," Biomaterials, vol. 32, no. 33, pp. 8593-8604, Nov, doi: 10.1016/j.biomaterials.2011.07.057. Retrieved from https://doi.org/10.1016/j.biomaterials.2011.07.057 DOI: https://doi.org/10.1016/j.biomaterials.2011.07.057

S.-J. Suet al. (2005), "The novel targets for anti-angiogenesis of genistein on human cancer cells," Biochem. Pharmacol., vol. 69, no. 2, pp. 307-318, Jan, doi: 10.1016/j.bcp.2004.09.025. Retrieved from https://doi.org/10.1016/j.bcp.2004.09.025 DOI: https://doi.org/10.1016/j.bcp.2004.09.025

T. Kruk, K. Szczepanowicz, J. Stefańska, R. P. Socha, and P. Warszyński (2015), "Synthesis and antimicrobial activity of monodisperse copper nanoparticles," Colloids Surf. B Biointerfaces, vol. 128, pp. 17-22, Apr, doi: 10.1016/j.colsurfb.2015.02.009. Retrieved from https://doi.org/10.1016/j.colsurfb.2015.02.009 DOI: https://doi.org/10.1016/j.colsurfb.2015.02.009

W. H. De Jong and P. J. A. Borm (2008), "Drug delivery and nanoparticles:applications and hazards," Int. J. Nanomedicine, vol. 3, no. 2, pp. 133-149, doi: 10.2147/ijn.s596. Retrieved from https://doi.org/10.2147/IJN.S596 DOI: https://doi.org/10.2147/IJN.S596

W. Yin, W. Chai, K. Wang, W. Ye, Y. Rui, and B. Tang (2019), "Facile synthesis of Sb nanoparticles anchored on reduced graphene oxides as excellent anode materials for lithium-ion batteries," J. Alloys Compd., vol. 797, pp. 1249-1257, doi: https://doi.org/10.1016/j.jallcom.2019.04.329. Retrieved from https://doi.org/10.1016/j.jallcom.2019.04.329 DOI: https://doi.org/10.1016/j.jallcom.2019.04.329

Downloads

Published

2021-11-19

How to Cite

Chatterjee, D., Mallick, S. B., Hazra, D., & Pal, R. (2021). DESIGNING OF NANOCOMPOSITE MODEL STRUCTURE USING GLYCITEIN AND GENISTEIN WITH TWELVE DIFFERENT METAL ATOMS USING IN SILICO METHOD. International Journal of Engineering Technologies and Management Research, 8(11), 14–22. https://doi.org/10.29121/ijetmr.v8.i11.2021.1058