COPPER OXIDE THIN FILM SYNTHESIS, CHARACTERIZATION AND APPLICATION AS CATHODE IN PHOTOELECTROCATALYTIC CELL FOR METHYL ORANGE DEGRADATION
DOI:
https://doi.org/10.29121/ijetmr.v8.i6.2021.979Keywords:
Cu2O, Photocurrent, Methyl Orange, And Degradation.Abstract
A copper oxide thin film was synthesized through a copper sheet annealing process that was carried out using a gas stove, furnace and 1000 W tungsten . The product and its response were measured using a and then characterized by XRD, SEM and EDX. Furthermore, the copper oxide was applied as a photocathode in a cell with Platinum (Pt) as the anode for methyl orange degradation, and the thin film annealed at 60 sec produced the highest current density. According to XRD and EDX results, copper oxide structure was dominated by Cu2O, while SEM showed the presence of a Cu2O porous surface. Methyl orange solution degradation also showed the best result for the copper oxide annealed at 60 sec and in all pH variations, while the best degradation was obtained at pH 1.
Downloads
References
Abd-Ellah, M., Thomas, J. P., Zhang, L. & Tong, K. (2016). Solar Energy Materials & Solar Cells Enhancement Of Solar Cell Performance Of P-Cu2o/N-Zno-Nanotube And Nanorod Heterojunction Devices. Sol. Energy Mater. Sol. Cells 152, 87–93. DOI: https://doi.org/10.1016/j.solmat.2016.03.022
Aggarwal, S. (2016). Photo Catalytic Degradation Of Methyl Orange By Using Cds Semiconductor Nanoparticles Photo Catalyst. Int. Res. J. Eng. Technol 3, 2–6.
Bi, J., Wu, S., Xia, H., Li, L. & Zhang, S. (2019). Synthesis of monodisperse single-crystal Cu2O spheres and their application in generating structural colors. Journal of Materials Chemistry C 7(15), 4551–4558. Retrieved from https://dx.doi.org/10.1039/c9tc00809h 10.1039/c9tc00809h DOI: https://doi.org/10.1039/C9TC00809H
Cui, Z., Yang, H. & Zhao, X. (2017). Enhanced Photocatalytic Performance Of G-C3n4/Bi4ti3o12 Heterojunction Nanocomposites. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol 229, 160–172. DOI: https://doi.org/10.1016/j.mseb.2017.12.037
Eskandari, A., Sangpour, P. & Vaezi, M.R. (2014). Hydrophilic Cu2O nanostructured thin films prepared by facile spin coating method: Investigation of surface energy and roughness. Materials Chemistry and Physics 147(3), 1204–1209. Retrieved from https://dx.doi.org/10.1016/j.matchemphys.2014.07.008 10.1016/j.matchemphys.2014.07.008 DOI: https://doi.org/10.1016/j.matchemphys.2014.07.008
Guzmán, H., Farkhondehfal, M. A., Tolod, K. R., Hernández, S. & Russo, N. (2019). Photo/Electrocatalytic Hydrogen Exploitation For Co2 Reduction Toward Solar Fuels Production. Solar Hydrogen Production: Processes, Systems And Technologies 365–418. DOI: https://doi.org/10.1016/B978-0-12-814853-2.00011-4
Ismail, M., Akhtar, K., Khan, M.I., Kamal, T., Khan, M. A., M. Asiri, A., Seo, J. & Khan, S. B. (2019). Pollution, Toxicity and Carcinogenicity of Organic Dyes and their Catalytic Bio-Remediation. Current Pharmaceutical Design 25(34), 3645–3663. Retrieved from https://dx.doi.org/10.2174/1381612825666191021142026 10.2174/1381612825666191021142026 DOI: https://doi.org/10.2174/1381612825666191021142026
John, N., Tharayil, N. J. & Somaraj, M. (2017). Photocatalytic degradation of methyl orange using biologically enhanced tin oxide nanoparticles under UV-irradiation. Journal of Materials Science: Materials in Electronics 28(8), 5860–5865. Retrieved from https://dx.doi.org/10.1007/s10854-016-6258-7 10.1007/s10854-016-6258-7 DOI: https://doi.org/10.1007/s10854-016-6258-7
Kasinathan, K., Kennedy, J., Elayaperumal, M., Henini, M. & Malik, M. (2016). Photodegradation of organic pollutants RhB dye using UV simulated sunlight on ceria based TiO2 nanomaterials for antibacterial applications. Scientific Reports 6(1), 1–12. Retrieved from https://dx.doi.org/10.1038/srep38064 10.1038/srep38064 DOI: https://doi.org/10.1038/srep38064
Khan, M. S. J., Kamal, T., Ali, F., Asiri, A. M. & Khan, S. B. (2019). Chitosan-coated polyurethane sponge supported metal nanoparticles for catalytic reduction of organic pollutants. International Journal of Biological Macromolecules 132, 772–783. Retrieved from https://dx.doi.org/10.1016/j.ijbiomac.2019.03.205 10.1016/j.ijbiomac.2019.03.205 DOI: https://doi.org/10.1016/j.ijbiomac.2019.03.205
Koiki, B. A. & Arotiba, O. A. (2020). Cu2O as an emerging semiconductor in photocatalytic and photoelectrocatalytic treatment of water contaminated with organic substances: a review. RSC Advances 10(60), 36514–36525. Retrieved from https://dx.doi.org/10.1039/d0ra06858f 10.1039/d0ra06858f DOI: https://doi.org/10.1039/D0RA06858F
Kuriakose, S., Avasthi, D. K. & Mohapatra, S. (2015). Effects of swift heavy ion irradiation on structural, optical and photocatalytic properties of ZnO–CuO nanocomposites prepared by carbothermal evaporation method. Beilstein Journal of Nanotechnology 6(1), 928–937. Retrieved from https://dx.doi.org/10.3762/bjnano.6.96 10.3762/bjnano.6.96 DOI: https://doi.org/10.3762/bjnano.6.96
Kuriakose, S., Sahu, K., Khan, S. A., Tripathi, A., Avasthi, D.K. & Mohapatra, S. (2017). Facile synthesis of Au-ZnO plasmonic nanohybrids for highly efficient photocatalytic degradation of methylene blue. Optical Materials 64, 47–52. Retrieved from https://dx.doi.org/10.1016/j.optmat.2016.11.035 10.1016/j.optmat.2016.11.035 DOI: https://doi.org/10.1016/j.optmat.2016.11.035
Kushwaha, A. K., Gupta, N. & Chattopadhyaya, M.C. (2014). Removal of cationic methylene blue and malachite green dyes from aqueous solution by waste materials of Daucus carota. Journal of Saudi Chemical Society 18(3), 200–207. Retrieved from https://dx.doi.org/10.1016/j.jscs.2011.06.011 10.1016/j.jscs.2011.06.011 DOI: https://doi.org/10.1016/j.jscs.2011.06.011
Luo, J., Steier, L., Son, M.-K., Schreier, M., Mayer, M. T. & Grätzel, M. (2016). Cu2O Nanowire Photocathodes for Efficient and Durable Solar Water Splitting. Nano Letters 16(3), 1848–1857. Retrieved from https://dx.doi.org/10.1021/acs.nanolett.5b04929 10.1021/acs.nanolett.5b04929 DOI: https://doi.org/10.1021/acs.nanolett.5b04929
Mageshwari, K., Nataraj, D., Pal, T., Sathyamoorthy, R. & Park, J. (2015). Improved photocatalytic activity of ZnO coupled CuO nanocomposites synthesized by reflux condensation method. Journal of Alloys and Compounds 625, 362–370. Retrieved from https://dx.doi.org/10.1016/j.jallcom.2014.11.109 10.1016/j.jallcom.2014.11.109 DOI: https://doi.org/10.1016/j.jallcom.2014.11.109
Mahmood, A., Tezcan, F. & Kardaş, G. (2017). Photoelectrochemical characteristics of CuO films with different electrodeposition time. International Journal of Hydrogen Energy 42(36), 23268–23275. Retrieved from https://dx.doi.org/10.1016/j.ijhydene.2017.06.003 10.1016/j.ijhydene.2017.06.003 DOI: https://doi.org/10.1016/j.ijhydene.2017.06.003
Ma, Q.-B., Hofmann, J. P., Litke, A. & Hensen, E. J.M. (2015). Cu2O photoelectrodes for solar water splitting: Tuning photoelectrochemical performance by controlled faceting. Solar Energy Materials and Solar Cells 141, 178–186. Retrieved from https://dx.doi.org/10.1016/j.solmat.2015.05.025 10.1016/j.solmat.2015.05.025 DOI: https://doi.org/10.1016/j.solmat.2015.05.025
McMichael, S., Fernández-Ibáñez, P. & Byrne, J. A. (2021). A Review of Photoelectrocatalytic Reactors for Water and Wastewater Treatment. Water. MDPI AG 13, 1198 Retrieved from https://dx.doi.org/10.3390/w13091198 DOI: https://doi.org/10.3390/w13091198
Muthirulan, P., Nirmala Devi, C. & Meenakshi Sundaram, M. (2017). Synchronous role of coupled adsorption and photocatalytic degradation on CAC–TiO 2 composite generating excellent mineralization of alizarin cyanine green dye in aqueous solution. Arabian Journal of Chemistry 10, S1477–S1483. Retrieved from https://dx.doi.org/10.1016/j.arabjc.2013.04.028 10.1016/j.arabjc.2013.04.028 DOI: https://doi.org/10.1016/j.arabjc.2013.04.028
Muthukumaran, M., Gnanamoorthy, G., Varun Prasath, P., Abinaya, M., Dhinagaran, G., Sagadevan, S., Mohammad, F., Oh, W. C. & Venkatachalam, K. (2020). Enhanced photocatalytic activity of Cuprous Oxide nanoparticles for malachite green degradation under the visible light radiation. Materials Research Express 7(1), 015038. Retrieved from https://dx.doi.org/10.1088/2053-1591/ab63fb 10.1088/2053-1591/ab63fb DOI: https://doi.org/10.1088/2053-1591/ab63fb
Oku, T., Yamada, T., Fujimoto, K. & Akiyama, T. (2014). Microstructures and Photovoltaic Properties of Zn(Al)O/Cu2O-Based Solar Cells Prepared by Spin-Coating and Electrodeposition. Coatings. MDPI AG 4, 203–213 Retrieved from https://dx.doi.org/10.3390/coatings4020203 DOI: https://doi.org/10.3390/coatings4020203
Rameshbabu, R., Kumar, N., Karthigeyan, A. & Neppolian, B. (2016). Visible light photocatalytic activities of ZnFe 2 O 4 /ZnO nanoparticles for the degradation of organic pollutants. Materials Chemistry and Physics 181, 106–115. Retrieved from https://dx.doi.org/10.1016/j.matchemphys.2016.06.040 10.1016/j.matchemphys.2016.06.040 DOI: https://doi.org/10.1016/j.matchemphys.2016.06.040
Ramezani, S., Zahedi, P., Bahrami, S.-H. & Nemati, Y. (2019). Microfluidic Fabrication of Nanoparticles Based on Ethyl Acrylate-Functionalized Chitosan for Adsorption of Methylene Blue from Aqueous Solutions. Journal of Polymers and the Environment 27(8), 1653–1665. Retrieved from https://dx.doi.org/10.1007/s10924-019-01463-6 10.1007/s10924-019-01463-6 DOI: https://doi.org/10.1007/s10924-019-01463-6
Safarvand, D., Naser, I., Samipourgiri, M. & Arjmand, M. (2020). Efficient Photoelectrocatalytic Degradation of BTEX Using TiO2/CuO/Cu2O Nanorod-Array Film as the Photoanode and MWCNT/GO/Graphite Felt as the Photocathode. Electrocatalysis 11(2), 188–202. Retrieved from https://dx.doi.org/10.1007/s12678-019-00576-9 10.1007/s12678-019-00576-9 DOI: https://doi.org/10.1007/s12678-019-00576-9
Sahu, K., Choudhary, S., Khan, S. A., Pandey, A. & Mohapatra, S. (2019). Thermal evolution of morphological, structural, optical and photocatalytic properties of CuO thin films. Nano-Structures & Nano-Objects 17, 92–102. Retrieved from https://dx.doi.org/10.1016/j.nanoso.2018.12.005 10.1016/j.nanoso.2018.12.005 DOI: https://doi.org/10.1016/j.nanoso.2018.12.005
Sahu, K., kuriakose, S., Singh, J., Satpati, B. & Mohapatra, S. (2018). Facile synthesis of ZnO nanoplates and nanoparticle aggregates for highly efficient photocatalytic degradation of organic dyes. Journal of Physics and Chemistry of Solids 121, 186–195. Retrieved from https://dx.doi.org/10.1016/j.jpcs.2018.04.023 10.1016/j.jpcs.2018.04.023 DOI: https://doi.org/10.1016/j.jpcs.2018.04.023
Sahu, K., Satpati, B. & Mohapatra, S. (2019). Facile Synthesis and Phase-Dependent Catalytic Activity of Cabbage-Type Copper Oxide Nanostructures for Highly Efficient Reduction of 4-Nitrophenol. Catalysis Letters 149(9), 2519–2527. Retrieved from https://dx.doi.org/10.1007/s10562-019-02817-4 10.1007/s10562-019-02817-4 DOI: https://doi.org/10.1007/s10562-019-02817-4
Saikia, L., Bhuyan, D., Saikia, M., Malakar, B., Dutta, D. K. & Sengupta, P. (2015). Photocatalytic performance of ZnO nanomaterials for self sensitized degradation of malachite green dye under solar light. Applied Catalysis A: General 490, 42–49. Retrieved from https://dx.doi.org/10.1016/j.apcata.2014.10.053 10.1016/j.apcata.2014.10.053 DOI: https://doi.org/10.1016/j.apcata.2014.10.053
Sharma, S. & Bhattacharya, (2017). A Drinking Water Contamination And Treatment Techniques. Appl. Water Sci 7, 1043–1067. DOI: https://doi.org/10.1007/s13201-016-0455-7
Singh, J., Sahu, K., Pandey, A., Kumar, M., Ghosh, T., Satpati, B., Som, T., Varma, S., Avasthi, D.K. & Mohapatra, S. (2017). Atom beam sputtered Ag-TiO 2 plasmonic nanocomposite thin films for photocatalytic applications. Applied Surface Science 411, 347–354. Retrieved from https://dx.doi.org/10.1016/j.apsusc.2017.03.152 10.1016/j.apsusc.2017.03.152 DOI: https://doi.org/10.1016/j.apsusc.2017.03.152
Singh, J., Satpati, B. & Mohapatra, S. (2017). Structural, Optical and Plasmonic Properties of Ag-TiO2 Hybrid Plasmonic Nanostructures with Enhanced Photocatalytic Activity. Plasmonics 12(3), 877–888. Retrieved from https://dx.doi.org/10.1007/s11468-016-0339-6 10.1007/s11468-016-0339-6 DOI: https://doi.org/10.1007/s11468-016-0339-6
Singh, J. (2015). Thermal Evolution Of Structural, Optical And Photocatalytic Properties Of Tio2 Nanostructures. Adv. Mater. Lett 6(10), 924–929. DOI: https://doi.org/10.5185/amlett.2015.6000
Sullivan, I., Zoellner, B. & Maggard, P. A. (2016). Copper(I)-Based p-Type Oxides for Photoelectrochemical and Photovoltaic Solar Energy Conversion. Chemistry of Materials 28(17), 5999–6016. Retrieved from https://dx.doi.org/10.1021/acs.chemmater.6b00926 10.1021/acs.chemmater.6b00926 DOI: https://doi.org/10.1021/acs.chemmater.6b00926
Vequizo, J.J.M., Zhang, C. & Ichimura, M. (2015). Fabrication of Cu2O/Fe–O heterojunction solar cells by electrodeposition. Thin Solid Films 597, 83–87. Retrieved from https://dx.doi.org/10.1016/j.tsf.2015.11.034 10.1016/j.tsf.2015.11.034 DOI: https://doi.org/10.1016/j.tsf.2015.11.034
Wang, W., Zhang, W., Meng, S., Jia, L., Tan, M., Hao, C., Liang, Y., Wang, J. & Zou, B. (2016). Enhanced photoelectrochemical water splitting and photocatalytic water oxidation of Cu2O nanocube-loaded BiVO4 nanocrystal heterostructures. Electronic Materials Letters 12(6), 753–760. Retrieved from https://dx.doi.org/10.1007/s13391-016-6224-9 10.1007/s13391-016-6224-9 DOI: https://doi.org/10.1007/s13391-016-6224-9
Wick, R. & Tilley, S. D. (2015). Photovoltaic and Photoelectrochemical Solar Energy Conversion with Cu2O. The Journal of Physical Chemistry C 119(47), 26243–26257. Retrieved from https://dx.doi.org/10.1021/acs.jpcc.5b08397 10.1021/acs.jpcc.5b08397 DOI: https://doi.org/10.1021/acs.jpcc.5b08397
Yang, Y., Xu, D., Wu, Q. & Diao, P. (2016). Cu2O/CuO Bilayered Composite as a High-Efficiency Photocathode for Photoelectrochemical Hydrogen Evolution Reaction. Scientific Reports 6(1), 1–13. Retrieved from https://dx.doi.org/10.1038/srep35158 10.1038/srep35158 DOI: https://doi.org/10.1038/srep35158
Yu, C., Shu, Y., Zhou, X., Ren, Y. & Liu, Z. (2018). Multi-Branched Cu2o Nanowires For Photocatalytic Degradation Of Methyl Orange. Mater. Res. Express 5, 35046. DOI: https://doi.org/10.1088/2053-1591/aab516
Published
How to Cite
Issue
Section
License
License and Copyright Agreement
In submitting the manuscript to the journal, the authors certify that:
- They are authorized by their co-authors to enter into these arrangements.
- The work described has not been formally published before, except in the form of an abstract or as part of a published lecture, review, thesis, or overlay journal.
- That it is not under consideration for publication elsewhere.
- That its release has been approved by all the author(s) and by the responsible authorities – tacitly or explicitly – of the institutes where the work has been carried out.
- They secure the right to reproduce any material that has already been published or copyrighted elsewhere.
- They agree to the following license and copyright agreement.
Copyright
Authors who publish with International Journal of Engineering Technologies and Management Research agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY-SA 4.0) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors can enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or edit it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) before and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
For More info, please visit CopyRight Section