Path Planning, Genetic Algorithm, Time Optimization


The mathematical expression of the kinematic equations of each joint is utilized for the path planning using a quantic polynomial in joint space. In this study, a time optimization model for path planning using genetic algorithms with a vari- ety of crossover fraction and mutation rates is investigated. The optimization process is performed with MATLAB. Optimization using boundary conditions is performed with MATLAB. The result of the simulation, smooth speed graphs, angular position graphs, and the time when joint movements will complete the orbit as soon as possible are obtained. As a result of this study, a path planning model that can be applied to any robot is developed in joint space based on time optimization and can be used to shorten the task time, especially in task-based robots.


Download data is not yet available.


Abu-Dakka, F. J., Rubio, F., Valero, F. & Mata, V. (2013). Evolutionary indirect approach to solving trajectory planning problem for industrial robots operating in workspaces with obstacles. European Journal of Mechanics - A/Solids 42, 210–218. Retrieved from https://dx.doi.org/10.1016/j.euromechsol.2013.05.007 10.1016/j.euromechsol.2013.05.007

Bingül, Z. & Küçük, S. (2009). Kinematic Of Robot. İstanbul: Birsen Yayınevi

Cao, K.-C., Jiang, B. & Yue, D. (2017). Cooperative path following control of multiple nonholonomic mobile robots. ISA Transactions 71, 161–169. Retrieved from https://dx.doi.org/10.1016/j.isatra.2017.06.028 10.1016/j.isatra.2017.06.028

Chen, H., Fang, Y., Sun, N. & Qian, Y. (2015). Pseudospectral Method Based Time Optimal Trajectory Planning For Double Pendulum Cranes. Chinese Control Conference, CCC, 2015-Septe 4302–4307.

Craig, J. J. (2004). 2.Introduction To Robotics Mechanics And Control. Prentice Hall 1 Retrieved from Https://Doi.Org/10.1109/MEX.1986.4306961

Duque, D. A., Prieto, F. A. & Hoyos, J. G. (2017). Trajectory Generation For Robotic Assembly Operations Using Learning By Demonstration. Robotics And Computer-Integrated Manufacturing 57, 292–302.

Garrido, J., Yu, W. & Li, X. (2016). Robot trajectory generation using modified hidden Markov model and Lloyd's algorithm in joint space. Engineering Applications of Artificial Intelligence 53, 32–40. Retrieved from https://dx.doi.org/10.1016/j.engappai.2016.03.006 10.1016/j.engappai.2016.03.006

Gasparetto, A. & Zanotto, V. (2010). Optimal trajectory planning for industrial robots. Advances in Engineering Software 41(4), 548–556. Retrieved from https://dx.doi.org/10.1016/j.advengsoft.2009.11.001 10.1016/j.advengsoft.2009.11.001

Gasparetto, A. & Zanotto, V. (2008). A technique for time-jerk optimal planning of robot trajectories. Robotics and Computer-Integrated Manufacturing 24(3), 415–426. Retrieved from https://dx.doi.org/10.1016/j.rcim.2007.04.001 10.1016/j.rcim.2007.04.001

Gu, W., Cai, S., Hu, Y., Zhang, H. & Chen, H. (2019). Trajectory planning and tracking control of a ground mobile robot:A reconstruction approach towards space vehicle. ISA Transactions 87, 116–128. Retrieved from https://dx.doi.org/10.1016/j.isatra.2018.11.019 10.1016/j.isatra.2018.11.019

Haiek, D. E., Aboulissane, B., Bakkali, L. E. & Bahaoui, J. E. (2019). Optimal Trajectory Planning for Spherical Robot Using Evolutionary Algorithms. Procedia Manufacturing 32, 960–968. Retrieved from https://dx.doi.org/10.1016/j.promfg.2019.02.309 10.1016/j.promfg.2019.02.309

Hasan, A. T. (2010). Performance Prediction Network For Serial Manipulators Inverse Kinematics Solution Passing Through Singular Configurations. 7, 10–23

Huang, J., Wang, X., Liu, D. & Cui, Y. (2012). A New Method For Solving Inverse Kinematics Of An Industrial Robot. International Conference On Computer Science And Electronics Engineering 3, 53–56.

Jin, X., Kang, J., Zhang, J. & Yang, X. (2016). Trajectory Planning Of A Six-DOF Robot Based On A Hybrid Optimization Algorithm. Retrieved from Https://Doi.Org/10.1109/ISCID.2016.148

Kim, K. B. & Kim, B. K. (2011). Minimum-Time Trajectory For Three-Wheeled Omnidirectional Mobile Robots Following A Bounded-Curvature Path With A Referenced Heading Profile. IEEE Transactions On Robotics 27(4), 800–808.

Ko, M. H., Ryuh, B.-S., Kim, K. C., Suprem, A. & Mahalik, N. P. (2015). Autonomous Greenhouse Mobile Robot Driving Strategies From System Integration Perspective: Review and Application. IEEE/ASME Transactions on Mechatronics 20(4), 1705–1716. Retrieved from https://dx.doi.org/10.1109/tmech.2014.2350433 10.1109/tmech.2014.2350433

Küçük, S., Kocaeli, U. & Bingül, Z. (2004). The Inverse Kinematics Solutions Of Industrial Robot Manipulators. Mechatronics, 2004. ICM ’04. Proceedings Of The IEEE International Conference On. 274–279 Retrieved from Https://Doi.Org/10.1109/ICMECH.2004.1364451

Lara-Molina, F. A., Koroishi, E. H. & Dumur, D. (2015). Combined Structure-Control Optimal Design Of The Stewart-Gough Robot. 12th Latin American Robotics Symposium And 2015 3rd Brazilian Symposium On Robotics (LARS-SBR) 19–24.

Li, W. B., Cao, G. Z., Guo, X. Q. & Huang, S. D. (2015). Development Of A 4-DOF SCARA Robot With 3R1P For Pick-And-Place Tasks. 6th International Conference On Power Electronics Systems And Applications: Electric Transportation - Automotive, Vessel And Aircraft, PESA 2015 .

Li, Z., Li, G., Sun, Y., Jiang, G. & Jianyi, K. (2017). Development Of Articulated Robot Trajectory Planning. 8, 52–60 Retrieved from Https://Doi.Org/10.1504/IJCSM.2017.083152

Machmudah, A., Parman, S., Zainuddin, A. & Chacko, S. (2013). Polynomial joint angle arm robot motion planning in complex geometrical obstacles. Applied Soft Computing 13(2), 1099–1109. Retrieved from https://dx.doi.org/10.1016/j.asoc.2012.09.025 10.1016/j.asoc.2012.09.025

Markus, E. D., Agee, J. T. & Jimoh, A. A. (2013). Trajectory Control Of A Two-Link Robot Manipulator In The Presence Of Gravity And Friction. Retrieved from Https://Doi.Org/10.1109/AFRCON.2013.6757809

Mineo, C., Pierce, S. G., Nicholson, P. I. & Cooper, I. (2016). Robotic path planning for non-destructive testing – A custom MATLAB toolbox approach. Robotics and Computer-Integrated Manufacturing 37, 1–12. Retrieved from https://dx.doi.org/10.1016/j.rcim.2015.05.003 10.1016/j.rcim.2015.05.003

Ragaglia, M., Zanchettin, A. M. & Rocco, P. (2018). Trajectory generation algorithm for safe human-robot collaboration based on multiple depth sensor measurements. Mechatronics 55, 267–281. Retrieved from https://dx.doi.org/10.1016/j.mechatronics.2017.12.009 10.1016/j.mechatronics.2017.12.009

Redondo, A. & LeSar, R. (2004). MODELING AND SIMULATION OF BIOMATERIALS. Annual Review of Materials Research 34(1), 279–314. Retrieved from https://dx.doi.org/10.1146/annurev.matsci.34.070503.123908 10.1146/annurev.matsci.34.070503.123908

Schilling, R. J. (1990). Fundamentals Of Robotics. USA: Prentice Hall

Švejda, M. & Čechura, T. (0411). Interpolation Method For Robot Trajectory Planning. Proceedings Of The 2015 20th International Conference On Process Control, PC 2015 .

Tan, G. Z. & Hu, S. Y. (2002). Real-Time Accurate Hand Path Tracking And Joint Trajectory Planning For Industrial Robots (II) Journal Of Central South University Of Technology (English Edition) 9(4), 273–278.

Vivek Deshpande, &. P. M. & George, (2014). Kinematic Modelling And Analysis Of 5 DOF Robotic Arm. International Journal Of Robotics Research And Development (IJRRD) 4(2), 1–8.

Xu, H., Xie, X., Zhuang, J. & Wang, S. (2010). Global Time-Energy Optimal Planning Of Industrial Robot Trajectories. Journal Of Mechanical Engineering 46(9), 19–25.

Zhang, J., Meng, Q., Feng, X. & Shen, H. (2018). A 6-DOF Robot-Time Optimal Trajectory Planning Based On An Improved Genetic Algorithm. Robotics And Biomimetics 5(1), 3–9.



How to Cite

Demir, H., Tolun, M. R., & Sari, F. (2021). TIME-OPTIMAL PATH PLANNING MODEL USING GENETIC ALGO- RITHM IN RRR ROBOT. International Journal of Engineering Technologies and Management Research, 8(5), 9–19. https://doi.org/10.29121/ijetmr.v8.i5.2021.938