SEDIMENT DYNAMICS AND STABILITY STATUS OF THE KARRA KHOLA, HETAUDA DUN VALLEY, CENTRAL NEPAL SUB-HIMALAYA

Authors

  • Naresh Kazi Tamrakar Central Department of Geology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
  • Suman Maharjan Central Department of Geology, Tribhuvan University, Kirtipur, Kathmandu, Nepal

DOI:

https://doi.org/10.29121/ijetmr.v7.i11.2020.815

Keywords:

Fluvial Sediment, Sediment Transport, Specific Stream Power, Flow Competency, Stability

Abstract

The Karra Khola in Hetauda, Siwalik region, originates within the Dun Valley, and contributes the Rapati Nadi in Hetauda Metropolitan city. The stability status of the river is of main concern because of rapid growing of the river corridor and peripheral land areas into suburban city. The river was surveyed for hydraulic parameters, sediment characteristics, and sediment loads. Rate of sediment transport and sediment yields were computed, and competency of the river was evaluated using Shield’s parameters and Reynolds numbers. The results show that the river sediments are sandy gravel to gravelly sands, and are moderately to very poorly sorted.  The total sediment yield of the whole basin near the outlet is around 2% of the maximum total sediment yield.  The specific stream power (SSP) ranges from 20.98 to 2866.34 Wm-2. The dimensionless boundary shear stress to dimensionless critical shear stress ratio exceeds unity, revealing that the river is competent enough to transport its bed material loads, except in downstream stretch before the river confluences with the Rapati Nadi. The Karra Khola clearly exhibits status of degradation in the upstream stretch, high rates of transportation due to lateral erosion in the midstream stretch, and aggradation in the downstream stretch.

Downloads

Download data is not yet available.

References

Bagnold, R. A., 1960. Sediment discharge and stream power-A preliminary announcement: US Geological Survey, Circular 421, 23 p. Available online: https://pubs.usgs.gov/circ/1960/0421/report.pdf DOI: https://doi.org/10.3133/cir421

Bagnold, R.A., 1966. An approach to the sediment transport problem from general physics (Geological Survey professional paper 422-I). Washington. D.C., US Geological Survey, U. S. Government Printing Office, 1–37. Available online: https://pubs.usgs.gov/pp/0422i/report.pdf

Bizzi, S. and Lerner, D.N., 2015. The Use of Stream Power as an Indicator of Channel Sensitivity to Erosion and Deposition Processes. River Research and Applications, 31 (1), 16–27. ISSN 1535-1459. Available online: https://doi.org/10.1002/rra.2717 DOI: https://doi.org/10.1002/rra.2717

Brookes, A., Gregory, K. J., and Dawson, F.H., 1983. An assessment of river channelization in England and Wales. Science of The Total Environment, 27, Issues 2–3, 97–111, ISSN 0048-9697. Available online: https://doi.org/10.1016/0048-9697(83)90149-3 DOI: https://doi.org/10.1016/0048-9697(83)90149-3

Brookes A., 1987. The distribution and management of channelized streams in Denmark. Regulated Rivers: Research and Management, 1, 3–16. Available online: https://doi.org/10.1002/rrr.3450010103 DOI: https://doi.org/10.1002/rrr.3450010103

Cavazza, W., Zuffa, G.G., Camporesi, C., Ferretti, C., 1993. Sedimentary recycling in the temperate climate drainage basin (Senio River, north central Italy); Composition of source rock, soil profile, and fluvial deposits. In: M. J., Johnson, A., Basu, eds. Processes controlling the composition of clastic sediments. Colorado, U.S.A, Geological Society of America, Special Paper. 284, 247–260. Available online: file:///C:/Users/Suman/Downloads/Cavazzaetal2000_p247-261%20(1).pdf DOI: https://doi.org/10.1130/SPE284-p247

Chow, V.T., 1959. Open-channel hydraulics. New York, McGraw-Hill Book Co., 680 p. Available online: http://web.ipb.ac.id/~erizal/hidrolika/Chow%20-%20OPEN%20CHANNEL%20HYDRAULICS.pdf

Costa, J. E., and O'Conner J. E.., 1995. Geomorphically effective floods. In: J. E. Costa, A. J. Miller, K. W. Potter, and P. R. Wilcock, eds. Natural and anthropogenic influences in fluvial geomorphology, Geophysical Monograph series. Washington, D.C., USA, American Geophysical Union, 89, 45–56. Available online: https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/GM089 DOI: https://doi.org/10.1029/GM089p0045

Cowan, W. L., 1956, Estimating Hydraulic roughness coefficients. Agricultural Engineering, 37(7), 473–475.

Cox, R. and Lowe, D.R., 1995. A conceptual review of regional-scale controls on the composition of clastic sediment and the co-evolution of continental blocks and their sedimentary cover. Journal of Sedimentary Research, A65(1), 1–12. DOI: https://doi.org/10.1306/D4268009-2B26-11D7-8648000102C1865D

Critelli, S., and Ingersoll, R. V., 1994. Sandstone petrology and provenance of the Siwalik Group (northwest Pakistan and western-southeastern Nepal). Journal of Sedimentary Research, A64, 815–823. DOI: https://doi.org/10.1306/D4267ED3-2B26-11D7-8648000102C1865D

DeCelles, P. G., Gehrels, G. E., Quade, J., Ojha, T. P., Kapp, P. A., and Upreti, B. N., 1998. Neogene foreland basin deposits, erosional unroofing, and the kinematic history of the Himalayan fold-thrust belt, Western Nepal. Geological Society of America Bulletin, 110, 2–21. Available online: https://doi.org/10.1130/0016-7606(1998)1102.3.CO;2

Dickinson, W.R., Beard, L. S., Brakenridge, G.R., Erjavec, J.L., Ferguson, R.C., Inman, K.F., Knepp, R.A., Lindberg, F.A. and Ryberg, P.T., 1983. Provenance of North American Phanerozoic sandtones in relation to tectonic setting. Geological Society of America Bulletin, 94, 222–235. DOI: https://doi.org/10.1130/0016-7606(1983)94<222:PONAPS>2.0.CO;2

Dickinson, W.R., Lawton, T.F., and Inman, K.F., 1986. Sandstone detrital modes, central Utah Foreland region: Stratigraphic record of Cretaceous-Paleogene tectonic evolution. Journal of Sedimentary Petrology, 56 (2), 276–293. DOI: https://doi.org/10.1306/212F88E6-2B24-11D7-8648000102C1865D

Du Boys, M. P., 1879. Le Rhone et less Rivieres a Lit affouillable. AAPG Memoir Documents, Annales Geophysicae, Pont et Chaussees, 5, 141–195.

Einstein, H. A., 1950. The bedload function for sediment transportation in open channel flows. Technical Bulletin, 71, 10261037. Available online: https://naldc.nal.usda.gov/download/CAT86201017/PDF

Ferguson R.I., 2005. Estimating critical stream power for bedload transport Calculations in gravel-bed rivers. Geomorphology, 70, 33–41. Available online: https://doi.org/10.1016/j.geomorph.2005.03.009 DOI: https://doi.org/10.1016/j.geomorph.2005.03.009

Folk, R. L., and Ward, W. C., 1957. Brazos River bar: a study in the significance of grain size parameters. Journal of Sedimentary Petrology, 27, 3–26. Available online: https://doi.org/10.1306/74D70646-2B21-11D7-8648000102C1865D DOI: https://doi.org/10.1306/74D70646-2B21-11D7-8648000102C1865D

Galay, V., 1987. Erosion and sedimentation in the Nepal Himalaya, An assessment of river processes, Ministry of water resources HMG Nepal, Report no. 4/3/012587/1/1, 259p.

Gautam, P., and Rösler, W., 1999. Depositional chronology and fabric of Siwalik group sediments in Central Nepal from magnetostratigraphy and magnetic anisotropy. Journal of Asian Earth Sciences, 17, 659–682. Available online: https://doi.org/10.1016/S1367-9120(99)00021-8 DOI: https://doi.org/10.1016/S1367-9120(99)00021-8

Gilbert, G.K., 1914. The transportation of débris by running water, U.S. Geological Survey, Professional Paper, 86, 263. Available online: https://pubs.usgs.gov/pp/0086/report.pdf

Grantham and Velbel, 1988. The influence of climate and topography on rock fragment abundance in modern fluvial sands of the Southern Blue Ridge Mountains. North Carolina, Journal of Sedimentary Petrology, 58, 219–227. Available online: https://pdfs.semanticscholar.org/687c/8850f366c45de0b57607edbf9696e7cd8399.pdf DOI: https://doi.org/10.1306/212F8D5F-2B24-11D7-8648000102C1865D

Hassanzadeh, Y., 2007. Evaluation of Sediments Load in a Natural River. Journal of Water International, 32, 145–154. Available online: https://doi.org/10.1080/02508060708691971 DOI: https://doi.org/10.1080/02508060708691971

Johnson, M.J., 1990. Tectonic versus chemical weathering controls on the composition of fluvial sands in tropical environments. Sedimentology, 37, 713–726. Available online: https://doi.org/10.1111/j.1365-3091.1990.tb00630.x DOI: https://doi.org/10.1111/j.1365-3091.1990.tb00630.x

Kimura, K., 1994. Formation and deformation of river terraces in the Hetauda Dun, Central Nepal. Institute of Geography, Faculty of Science, Tohoku University. 44(2), 151–181. Available online: https://core.ac.uk/download/pdf/235752734.pdf

Kimura, K., 1995. Late Quaternary Morphotectonics of the Hetauda dun, Nepal sub- Himalaya. Journal of Nepal Geological Society, 11 (special issue), 225–235.

Kizaki, K., 1994. An Outline of Himalayan Upheaval. Kathmandu, Jagadamba Prakashan, 127 p.

Knighton, D. 1998. Fluvial Forms and Processes: A New Perspective. New York: Oxford University Press Inc. 383p. ISBN 0340663138.

Lama, R., and Tamrakar, N. K., 2016. Dry season discharge and sediment yield of the northern tributaries of the Kathmandu Valley, Central Nepal. Bulletin of the Department of Geology, Tribhuvan University, Kathmandu, Nepal, 19, 29–44. DOI: https://doi.org/10.3126/bdg.v19i0.19988

Limerinos, J. T., 1970, Determination of the Manning coefficient from measured bed roughness in natural channels. U.S. Geological Survey, Water-Supply Paper, 1898-B, 47 p. Available online: https://pubs.usgs.gov/wsp/1898b/report.pdf

Lorang, M.S. and Hauer, F.R., 2003. Flow competence and streambed stability: an evaluation of technique and application. Journal of North American Benthological Society, 22(4), 475–491. Available online: https://www.journals.uchicago.edu/doi/pdfplus/10.2307/1468347 DOI: https://doi.org/10.2307/1468347

Magilligan, F. J., 1992. Thresholds and the spatial variability of flood power during extreme floods. Geomorphologv, 5, 373–390. Available online: https://doi.org/10.1016/0169-555X(92)90014-F DOI: https://doi.org/10.1016/0169-555X(92)90014-F

Mao, L., Uyttendaele, G. P., Iroume, A., and Lenzi, M. A., 2008. Field based analysis of sediment entrainment in two high gradient streams located in Alpine and Andine environments. Geomorphology, 93, 368–383. Available online: https://doi.org/10.1016/j.geomorph.2007.03.008 DOI: https://doi.org/10.1016/j.geomorph.2007.03.008

Mathur, A., and Da Cunha, D., 2001. Mississippi floods: Designing a shifting landscape. London: Yale University Press, 162 p.

Meyer-Peter, E., and Muller, R., 1948. Formulas for Bedload Transport. In. 2nd meeting of the International Association for Hydraulic Structures Research. Stockholm, International Association for Hydraulic Structures Research, 39–64. Available online: https://repository.tudelft.nl/islandora/object/uuid%3A4fda9b61-be28-4703-ab06-43cdc2a21bd7

Miller, A. J., 1990. Flood hydrology and geomorphic effectiveness in the Central Appalachians. Earth Surface Processes Landforms, 15, 119–134. Available online: https://doi.org/10.1002/esp.3290150203 DOI: https://doi.org/10.1002/esp.3290150203

Mua, K.E. and Shende, K.S., 2019. The Response of Stream Competence to Topographic and Seasonal Variations in the Bamenda-Menchum Drainage Basin, North West Region, Cameroon. Journal of Geography and Geology, 11(2), 21–34. Available online: https://doi.org/10.5539/jgg.v11n2p21 DOI: https://doi.org/10.5539/jgg.v11n2p21

Navratil, O. and Albert, M.B., 2010. Non-linearity of reach hydraulic geometry relations. Journal of Hydrology, 388, 280–290. Available online: https://doi.org/10.1016/j.jhydrol.2010.05.007 DOI: https://doi.org/10.1016/j.jhydrol.2010.05.007

Petit, F., Gob, F., Houbrechts, G., Assani, A.A., 2005. Critical specific stream power in gravel-bed rivers. Geomorphology, 69, 92–101. Available online: https://doi.org/10.1016/j.geomorph.2004.12.004 DOI: https://doi.org/10.1016/j.geomorph.2004.12.004

Rathburn, S., 1993. Pleistocene cataclysmic flooding along the Big Lost River, east central Idaho. Geomorphology, 8, 305–319. Available online: https://doi.org/10.1016/0169-555X(93)90026-X DOI: https://doi.org/10.1016/0169-555X(93)90026-X

Rosgen, D. L., 1996. Applied river morphoplogy. Wildland Hydrology Books. Colorado: Pagosa Springs, 378 p. Available online: https://www.leg.mn.gov/docs/2015/other/150681/PFEISref_2/Rosgen%201996.pdf

Rubey, W.W., 1933. Equilibrium conditions in debris-laden streams. Transaction of American Geophysical Union, 14, 497–505. Available online: https://doi.org/10.1029/TR014i001p00497 DOI: https://doi.org/10.1029/TR014i001p00497

Schelling, D., Cater, J., Seago, R., and Ojha, T.P., 1991. A balanced cross-section across the Central Nepal Siwalik Hills, Hetauda-Amlekhganj. Journal of Faculty of Science, Hokkaido University, Series IV, 23(1), Jul y., 1991, 1-9. Available online: http://hdl.handle.net/2115/36770

Schoklitsch, A., 1934. Der Geschiebetrieb und die Geschiebefracht. Wasserkraft und Wasserwirtschaft, 29(4): 37–43.

Shields A., 1936. Application of similarity principles, and turbulence research to bed load movement, Pasadena, CA: California Institute of Technology, Report 167. Available online: https://resolver.caltech.edu/CaltechKHR:HydroLabpub167

Shrestha, M.B., Miyazaki, T., and Watanabe, K., 2005. Analysis of Siwalik and Mahabharat watersheds with geomorphometric parameters. In. International Symposium on Landslide Hazard in Orogenic from the Himalaya to Island Arc in Asia, Kathmandu, 321–333.

Singh, V.P., 2003. On the theories of hydraulic geometry. International Journal of Sediment Research, 18(3), 196-218. Available online: http://geofaculty.uwyo.edu/neil/teaching/4880_files/HydraulicGeometry.pdf

Soar, P.J., Wallerstein, N.P., and Thorne, C.R., 2017. Quantifying River Channel Stability at the Basin Scale. Water, 9, 1–3. Available online: https://doi.org/10.3390/w9020133 (accessed on 14th March 2019) DOI: https://doi.org/10.3390/w9020133

Stewardson, M., 2005. Hydraulic geometry of stream reaches. Journal of Hydrology, 306, 97–111. Available online: https://doi.org/10.1016/j.jhydrol.2004.09.004 DOI: https://doi.org/10.1016/j.jhydrol.2004.09.004

Tamrakar, N. K., and Karki, B., 2019. Geomorphometric properties and variability of sediment deliery ratio and specific sediment yield ammong sub basins of the Karra River. Hetauda, Central Nepal Sub- Himalaya. Journal of Nepal Geological Society, 59, 19–37. DOI: https://doi.org/10.3126/jngs.v59i0.24983

Thompson, C. J. and Croke, J., 2013. Geomorphic effects, flood power, and channel competence of a catastrophic flood in confined and unconfined reaches of the upper Lockyer valley, southeast Queensland, Australia. Geomorphology, 197, 156–169. Available online: https://doi.org/10.1016/j.geomorph.2013.05.006 DOI: https://doi.org/10.1016/j.geomorph.2013.05.006

Tokuoka. T., Takayasu, K., Yoshida, M., Hisatomi, K., 1986. The Churia (Siwalik) Group in the Western part of the Arung Khola area, West Central Nepal. Japan, Memoir of Faculty of Shimane University, 22, 135210.

Tucker, G. E., and Slingerland, R., 1997. Drainage basin responses to climate change. Water Resource Research, 33, 20312047. Available online: https://doi.org/10.1029/2F97WR00409

Van Rijn, L.C., 1984. Sediment Transport, Part I: Bed Load Transport. Journal of Hydraulic Engineering, American Society of Civil Engineers, 110(10), 1431-1456. Available online: https://doi.org/10.1061/(ASCE)0733-9429(1984)110:10(1431) DOI: https://doi.org/10.1061/(ASCE)0733-9429(1984)110:10(1431)

Velikanov, M.A., 1955. Sediment and bed flow. eds. Dynamics of Alluvial Streams. Moscow, Russia: State Publishing House for Theoretical and Technical Literature, 2, 107-120.

West, R. M., and Munthe, J., 1981. Neogene Vertebrate Paleontology and Stratigraphy of Nepal. Journal of Nepal Geological Society, 1, 1-14. Available online: https://ngs.org.np/neogene-vertebrate-paleontology-and-stratigraphy-of-nepal/

Whitaker, A.C. and Donald F. Potts, D.F., 2007. Analysis of flow competence in an alluvial gravel bed stream, Dupuyer Creek, Montana. Water Resources Research, 43, 1–16. Available online: https://doi.org/10.1029/2006WR005289 DOI: https://doi.org/10.1029/2006WR005289

Wilcock, D. N., 1971. Investigation into the Relations between Bedload Transport and Channel Shape. Geological Society of America Bulletin, 82 (8), 2159. DOI: https://doi.org/10.1130/0016-7606(1971)82[2159:IITRBB]2.0.CO;2

Wolman, M. G., 1954. A method of sampling coarse river bed material. Transactions American Geophysics Union, 35, 951–956. Available online: http://dx.doi.org/10.1029/TR035i006p00951 DOI: https://doi.org/10.1029/TR035i006p00951

Yang, C. T., 1996. Sediment transport: theory and practice. New York: McGraw-Hill, 396p. Available online: http://infinity.wecabrio.com/read/70723095-sediment-transport-mcgraw-hill-series-in-water-reso.pdf

Yochum, S.E., Sholtes, J.S., Scott, J.A., Bledsoe, B.P., 2017. Stream power framework for predicting geomorphic change: The 2013 Colorado Front Range flood. Geomorphology, 292, 178-192. Available online: https://doi.org/10.1016/j.geomorph.2017.03.004 DOI: https://doi.org/10.1016/j.geomorph.2017.03.004

Downloads

Published

2020-12-04

How to Cite

Tamrakar, N. K., & Maharjan , S. (2020). SEDIMENT DYNAMICS AND STABILITY STATUS OF THE KARRA KHOLA, HETAUDA DUN VALLEY, CENTRAL NEPAL SUB-HIMALAYA. International Journal of Engineering Technologies and Management Research, 7(11), 50–68. https://doi.org/10.29121/ijetmr.v7.i11.2020.815