SEDIMENT DYNAMICS AND STABILITY STATUS OF THE KARRA KHOLA, HETAUDA DUN VALLEY, CENTRAL NEPAL SUB-HIMALAYA
DOI:
https://doi.org/10.29121/ijetmr.v7.i11.2020.815Keywords:
Fluvial Sediment, Sediment Transport, Specific Stream Power, Flow Competency, StabilityAbstract
The Karra Khola in Hetauda, Siwalik region, originates within the Dun Valley, and contributes the Rapati Nadi in Hetauda Metropolitan city. The stability status of the river is of main concern because of rapid growing of the river corridor and peripheral land areas into suburban city. The river was surveyed for hydraulic parameters, sediment characteristics, and sediment loads. Rate of sediment transport and sediment yields were computed, and competency of the river was evaluated using Shield’s parameters and Reynolds numbers. The results show that the river sediments are sandy gravel to gravelly sands, and are moderately to very poorly sorted. The total sediment yield of the whole basin near the outlet is around 2% of the maximum total sediment yield. The specific stream power (SSP) ranges from 20.98 to 2866.34 Wm-2. The dimensionless boundary shear stress to dimensionless critical shear stress ratio exceeds unity, revealing that the river is competent enough to transport its bed material loads, except in downstream stretch before the river confluences with the Rapati Nadi. The Karra Khola clearly exhibits status of degradation in the upstream stretch, high rates of transportation due to lateral erosion in the midstream stretch, and aggradation in the downstream stretch.
Downloads
References
Bagnold, R. A., 1960. Sediment discharge and stream power-A preliminary announcement: US Geological Survey, Circular 421, 23 p. Available online: https://pubs.usgs.gov/circ/1960/0421/report.pdf DOI: https://doi.org/10.3133/cir421
Bagnold, R.A., 1966. An approach to the sediment transport problem from general physics (Geological Survey professional paper 422-I). Washington. D.C., US Geological Survey, U. S. Government Printing Office, 1–37. Available online: https://pubs.usgs.gov/pp/0422i/report.pdf
Bizzi, S. and Lerner, D.N., 2015. The Use of Stream Power as an Indicator of Channel Sensitivity to Erosion and Deposition Processes. River Research and Applications, 31 (1), 16–27. ISSN 1535-1459. Available online: https://doi.org/10.1002/rra.2717 DOI: https://doi.org/10.1002/rra.2717
Brookes, A., Gregory, K. J., and Dawson, F.H., 1983. An assessment of river channelization in England and Wales. Science of The Total Environment, 27, Issues 2–3, 97–111, ISSN 0048-9697. Available online: https://doi.org/10.1016/0048-9697(83)90149-3 DOI: https://doi.org/10.1016/0048-9697(83)90149-3
Brookes A., 1987. The distribution and management of channelized streams in Denmark. Regulated Rivers: Research and Management, 1, 3–16. Available online: https://doi.org/10.1002/rrr.3450010103 DOI: https://doi.org/10.1002/rrr.3450010103
Cavazza, W., Zuffa, G.G., Camporesi, C., Ferretti, C., 1993. Sedimentary recycling in the temperate climate drainage basin (Senio River, north central Italy); Composition of source rock, soil profile, and fluvial deposits. In: M. J., Johnson, A., Basu, eds. Processes controlling the composition of clastic sediments. Colorado, U.S.A, Geological Society of America, Special Paper. 284, 247–260. Available online: file:///C:/Users/Suman/Downloads/Cavazzaetal2000_p247-261%20(1).pdf DOI: https://doi.org/10.1130/SPE284-p247
Chow, V.T., 1959. Open-channel hydraulics. New York, McGraw-Hill Book Co., 680 p. Available online: http://web.ipb.ac.id/~erizal/hidrolika/Chow%20-%20OPEN%20CHANNEL%20HYDRAULICS.pdf
Costa, J. E., and O'Conner J. E.., 1995. Geomorphically effective floods. In: J. E. Costa, A. J. Miller, K. W. Potter, and P. R. Wilcock, eds. Natural and anthropogenic influences in fluvial geomorphology, Geophysical Monograph series. Washington, D.C., USA, American Geophysical Union, 89, 45–56. Available online: https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/GM089 DOI: https://doi.org/10.1029/GM089p0045
Cowan, W. L., 1956, Estimating Hydraulic roughness coefficients. Agricultural Engineering, 37(7), 473–475.
Cox, R. and Lowe, D.R., 1995. A conceptual review of regional-scale controls on the composition of clastic sediment and the co-evolution of continental blocks and their sedimentary cover. Journal of Sedimentary Research, A65(1), 1–12. DOI: https://doi.org/10.1306/D4268009-2B26-11D7-8648000102C1865D
Critelli, S., and Ingersoll, R. V., 1994. Sandstone petrology and provenance of the Siwalik Group (northwest Pakistan and western-southeastern Nepal). Journal of Sedimentary Research, A64, 815–823. DOI: https://doi.org/10.1306/D4267ED3-2B26-11D7-8648000102C1865D
DeCelles, P. G., Gehrels, G. E., Quade, J., Ojha, T. P., Kapp, P. A., and Upreti, B. N., 1998. Neogene foreland basin deposits, erosional unroofing, and the kinematic history of the Himalayan fold-thrust belt, Western Nepal. Geological Society of America Bulletin, 110, 2–21. Available online: https://doi.org/10.1130/0016-7606(1998)1102.3.CO;2
Dickinson, W.R., Beard, L. S., Brakenridge, G.R., Erjavec, J.L., Ferguson, R.C., Inman, K.F., Knepp, R.A., Lindberg, F.A. and Ryberg, P.T., 1983. Provenance of North American Phanerozoic sandtones in relation to tectonic setting. Geological Society of America Bulletin, 94, 222–235. DOI: https://doi.org/10.1130/0016-7606(1983)94<222:PONAPS>2.0.CO;2
Dickinson, W.R., Lawton, T.F., and Inman, K.F., 1986. Sandstone detrital modes, central Utah Foreland region: Stratigraphic record of Cretaceous-Paleogene tectonic evolution. Journal of Sedimentary Petrology, 56 (2), 276–293. DOI: https://doi.org/10.1306/212F88E6-2B24-11D7-8648000102C1865D
Du Boys, M. P., 1879. Le Rhone et less Rivieres a Lit affouillable. AAPG Memoir Documents, Annales Geophysicae, Pont et Chaussees, 5, 141–195.
Einstein, H. A., 1950. The bedload function for sediment transportation in open channel flows. Technical Bulletin, 71, 10261037. Available online: https://naldc.nal.usda.gov/download/CAT86201017/PDF
Ferguson R.I., 2005. Estimating critical stream power for bedload transport Calculations in gravel-bed rivers. Geomorphology, 70, 33–41. Available online: https://doi.org/10.1016/j.geomorph.2005.03.009 DOI: https://doi.org/10.1016/j.geomorph.2005.03.009
Folk, R. L., and Ward, W. C., 1957. Brazos River bar: a study in the significance of grain size parameters. Journal of Sedimentary Petrology, 27, 3–26. Available online: https://doi.org/10.1306/74D70646-2B21-11D7-8648000102C1865D DOI: https://doi.org/10.1306/74D70646-2B21-11D7-8648000102C1865D
Galay, V., 1987. Erosion and sedimentation in the Nepal Himalaya, An assessment of river processes, Ministry of water resources HMG Nepal, Report no. 4/3/012587/1/1, 259p.
Gautam, P., and Rösler, W., 1999. Depositional chronology and fabric of Siwalik group sediments in Central Nepal from magnetostratigraphy and magnetic anisotropy. Journal of Asian Earth Sciences, 17, 659–682. Available online: https://doi.org/10.1016/S1367-9120(99)00021-8 DOI: https://doi.org/10.1016/S1367-9120(99)00021-8
Gilbert, G.K., 1914. The transportation of débris by running water, U.S. Geological Survey, Professional Paper, 86, 263. Available online: https://pubs.usgs.gov/pp/0086/report.pdf
Grantham and Velbel, 1988. The influence of climate and topography on rock fragment abundance in modern fluvial sands of the Southern Blue Ridge Mountains. North Carolina, Journal of Sedimentary Petrology, 58, 219–227. Available online: https://pdfs.semanticscholar.org/687c/8850f366c45de0b57607edbf9696e7cd8399.pdf DOI: https://doi.org/10.1306/212F8D5F-2B24-11D7-8648000102C1865D
Hassanzadeh, Y., 2007. Evaluation of Sediments Load in a Natural River. Journal of Water International, 32, 145–154. Available online: https://doi.org/10.1080/02508060708691971 DOI: https://doi.org/10.1080/02508060708691971
Johnson, M.J., 1990. Tectonic versus chemical weathering controls on the composition of fluvial sands in tropical environments. Sedimentology, 37, 713–726. Available online: https://doi.org/10.1111/j.1365-3091.1990.tb00630.x DOI: https://doi.org/10.1111/j.1365-3091.1990.tb00630.x
Kimura, K., 1994. Formation and deformation of river terraces in the Hetauda Dun, Central Nepal. Institute of Geography, Faculty of Science, Tohoku University. 44(2), 151–181. Available online: https://core.ac.uk/download/pdf/235752734.pdf
Kimura, K., 1995. Late Quaternary Morphotectonics of the Hetauda dun, Nepal sub- Himalaya. Journal of Nepal Geological Society, 11 (special issue), 225–235.
Kizaki, K., 1994. An Outline of Himalayan Upheaval. Kathmandu, Jagadamba Prakashan, 127 p.
Knighton, D. 1998. Fluvial Forms and Processes: A New Perspective. New York: Oxford University Press Inc. 383p. ISBN 0340663138.
Lama, R., and Tamrakar, N. K., 2016. Dry season discharge and sediment yield of the northern tributaries of the Kathmandu Valley, Central Nepal. Bulletin of the Department of Geology, Tribhuvan University, Kathmandu, Nepal, 19, 29–44. DOI: https://doi.org/10.3126/bdg.v19i0.19988
Limerinos, J. T., 1970, Determination of the Manning coefficient from measured bed roughness in natural channels. U.S. Geological Survey, Water-Supply Paper, 1898-B, 47 p. Available online: https://pubs.usgs.gov/wsp/1898b/report.pdf
Lorang, M.S. and Hauer, F.R., 2003. Flow competence and streambed stability: an evaluation of technique and application. Journal of North American Benthological Society, 22(4), 475–491. Available online: https://www.journals.uchicago.edu/doi/pdfplus/10.2307/1468347 DOI: https://doi.org/10.2307/1468347
Magilligan, F. J., 1992. Thresholds and the spatial variability of flood power during extreme floods. Geomorphologv, 5, 373–390. Available online: https://doi.org/10.1016/0169-555X(92)90014-F DOI: https://doi.org/10.1016/0169-555X(92)90014-F
Mao, L., Uyttendaele, G. P., Iroume, A., and Lenzi, M. A., 2008. Field based analysis of sediment entrainment in two high gradient streams located in Alpine and Andine environments. Geomorphology, 93, 368–383. Available online: https://doi.org/10.1016/j.geomorph.2007.03.008 DOI: https://doi.org/10.1016/j.geomorph.2007.03.008
Mathur, A., and Da Cunha, D., 2001. Mississippi floods: Designing a shifting landscape. London: Yale University Press, 162 p.
Meyer-Peter, E., and Muller, R., 1948. Formulas for Bedload Transport. In. 2nd meeting of the International Association for Hydraulic Structures Research. Stockholm, International Association for Hydraulic Structures Research, 39–64. Available online: https://repository.tudelft.nl/islandora/object/uuid%3A4fda9b61-be28-4703-ab06-43cdc2a21bd7
Miller, A. J., 1990. Flood hydrology and geomorphic effectiveness in the Central Appalachians. Earth Surface Processes Landforms, 15, 119–134. Available online: https://doi.org/10.1002/esp.3290150203 DOI: https://doi.org/10.1002/esp.3290150203
Mua, K.E. and Shende, K.S., 2019. The Response of Stream Competence to Topographic and Seasonal Variations in the Bamenda-Menchum Drainage Basin, North West Region, Cameroon. Journal of Geography and Geology, 11(2), 21–34. Available online: https://doi.org/10.5539/jgg.v11n2p21 DOI: https://doi.org/10.5539/jgg.v11n2p21
Navratil, O. and Albert, M.B., 2010. Non-linearity of reach hydraulic geometry relations. Journal of Hydrology, 388, 280–290. Available online: https://doi.org/10.1016/j.jhydrol.2010.05.007 DOI: https://doi.org/10.1016/j.jhydrol.2010.05.007
Petit, F., Gob, F., Houbrechts, G., Assani, A.A., 2005. Critical specific stream power in gravel-bed rivers. Geomorphology, 69, 92–101. Available online: https://doi.org/10.1016/j.geomorph.2004.12.004 DOI: https://doi.org/10.1016/j.geomorph.2004.12.004
Rathburn, S., 1993. Pleistocene cataclysmic flooding along the Big Lost River, east central Idaho. Geomorphology, 8, 305–319. Available online: https://doi.org/10.1016/0169-555X(93)90026-X DOI: https://doi.org/10.1016/0169-555X(93)90026-X
Rosgen, D. L., 1996. Applied river morphoplogy. Wildland Hydrology Books. Colorado: Pagosa Springs, 378 p. Available online: https://www.leg.mn.gov/docs/2015/other/150681/PFEISref_2/Rosgen%201996.pdf
Rubey, W.W., 1933. Equilibrium conditions in debris-laden streams. Transaction of American Geophysical Union, 14, 497–505. Available online: https://doi.org/10.1029/TR014i001p00497 DOI: https://doi.org/10.1029/TR014i001p00497
Schelling, D., Cater, J., Seago, R., and Ojha, T.P., 1991. A balanced cross-section across the Central Nepal Siwalik Hills, Hetauda-Amlekhganj. Journal of Faculty of Science, Hokkaido University, Series IV, 23(1), Jul y., 1991, 1-9. Available online: http://hdl.handle.net/2115/36770
Schoklitsch, A., 1934. Der Geschiebetrieb und die Geschiebefracht. Wasserkraft und Wasserwirtschaft, 29(4): 37–43.
Shields A., 1936. Application of similarity principles, and turbulence research to bed load movement, Pasadena, CA: California Institute of Technology, Report 167. Available online: https://resolver.caltech.edu/CaltechKHR:HydroLabpub167
Shrestha, M.B., Miyazaki, T., and Watanabe, K., 2005. Analysis of Siwalik and Mahabharat watersheds with geomorphometric parameters. In. International Symposium on Landslide Hazard in Orogenic from the Himalaya to Island Arc in Asia, Kathmandu, 321–333.
Singh, V.P., 2003. On the theories of hydraulic geometry. International Journal of Sediment Research, 18(3), 196-218. Available online: http://geofaculty.uwyo.edu/neil/teaching/4880_files/HydraulicGeometry.pdf
Soar, P.J., Wallerstein, N.P., and Thorne, C.R., 2017. Quantifying River Channel Stability at the Basin Scale. Water, 9, 1–3. Available online: https://doi.org/10.3390/w9020133 (accessed on 14th March 2019) DOI: https://doi.org/10.3390/w9020133
Stewardson, M., 2005. Hydraulic geometry of stream reaches. Journal of Hydrology, 306, 97–111. Available online: https://doi.org/10.1016/j.jhydrol.2004.09.004 DOI: https://doi.org/10.1016/j.jhydrol.2004.09.004
Tamrakar, N. K., and Karki, B., 2019. Geomorphometric properties and variability of sediment deliery ratio and specific sediment yield ammong sub basins of the Karra River. Hetauda, Central Nepal Sub- Himalaya. Journal of Nepal Geological Society, 59, 19–37. DOI: https://doi.org/10.3126/jngs.v59i0.24983
Thompson, C. J. and Croke, J., 2013. Geomorphic effects, flood power, and channel competence of a catastrophic flood in confined and unconfined reaches of the upper Lockyer valley, southeast Queensland, Australia. Geomorphology, 197, 156–169. Available online: https://doi.org/10.1016/j.geomorph.2013.05.006 DOI: https://doi.org/10.1016/j.geomorph.2013.05.006
Tokuoka. T., Takayasu, K., Yoshida, M., Hisatomi, K., 1986. The Churia (Siwalik) Group in the Western part of the Arung Khola area, West Central Nepal. Japan, Memoir of Faculty of Shimane University, 22, 135210.
Tucker, G. E., and Slingerland, R., 1997. Drainage basin responses to climate change. Water Resource Research, 33, 20312047. Available online: https://doi.org/10.1029/2F97WR00409
Van Rijn, L.C., 1984. Sediment Transport, Part I: Bed Load Transport. Journal of Hydraulic Engineering, American Society of Civil Engineers, 110(10), 1431-1456. Available online: https://doi.org/10.1061/(ASCE)0733-9429(1984)110:10(1431) DOI: https://doi.org/10.1061/(ASCE)0733-9429(1984)110:10(1431)
Velikanov, M.A., 1955. Sediment and bed flow. eds. Dynamics of Alluvial Streams. Moscow, Russia: State Publishing House for Theoretical and Technical Literature, 2, 107-120.
West, R. M., and Munthe, J., 1981. Neogene Vertebrate Paleontology and Stratigraphy of Nepal. Journal of Nepal Geological Society, 1, 1-14. Available online: https://ngs.org.np/neogene-vertebrate-paleontology-and-stratigraphy-of-nepal/
Whitaker, A.C. and Donald F. Potts, D.F., 2007. Analysis of flow competence in an alluvial gravel bed stream, Dupuyer Creek, Montana. Water Resources Research, 43, 1–16. Available online: https://doi.org/10.1029/2006WR005289 DOI: https://doi.org/10.1029/2006WR005289
Wilcock, D. N., 1971. Investigation into the Relations between Bedload Transport and Channel Shape. Geological Society of America Bulletin, 82 (8), 2159. DOI: https://doi.org/10.1130/0016-7606(1971)82[2159:IITRBB]2.0.CO;2
Wolman, M. G., 1954. A method of sampling coarse river bed material. Transactions American Geophysics Union, 35, 951–956. Available online: http://dx.doi.org/10.1029/TR035i006p00951 DOI: https://doi.org/10.1029/TR035i006p00951
Yang, C. T., 1996. Sediment transport: theory and practice. New York: McGraw-Hill, 396p. Available online: http://infinity.wecabrio.com/read/70723095-sediment-transport-mcgraw-hill-series-in-water-reso.pdf
Yochum, S.E., Sholtes, J.S., Scott, J.A., Bledsoe, B.P., 2017. Stream power framework for predicting geomorphic change: The 2013 Colorado Front Range flood. Geomorphology, 292, 178-192. Available online: https://doi.org/10.1016/j.geomorph.2017.03.004 DOI: https://doi.org/10.1016/j.geomorph.2017.03.004
Published
How to Cite
Issue
Section
License
License and Copyright Agreement
In submitting the manuscript to the journal, the authors certify that:
- They are authorized by their co-authors to enter into these arrangements.
- The work described has not been formally published before, except in the form of an abstract or as part of a published lecture, review, thesis, or overlay journal.
- That it is not under consideration for publication elsewhere.
- That its release has been approved by all the author(s) and by the responsible authorities – tacitly or explicitly – of the institutes where the work has been carried out.
- They secure the right to reproduce any material that has already been published or copyrighted elsewhere.
- They agree to the following license and copyright agreement.
Copyright
Authors who publish with International Journal of Engineering Technologies and Management Research agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY-SA 4.0) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors can enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or edit it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) before and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
For More info, please visit CopyRight Section