CONCEPTUAL FRAMEWORK FOR EFFICIENT 802.11 A/B/G/N WIRELESS NETWORKS INFRASTRUCTURE TO IMPROVE CAMPUS INTERNET CONNECTIVITY
DOI:
https://doi.org/10.29121/ijetmr.v7.i11.2020.802Keywords:
Quality Of Service, Wireless Network, Availability, Accessibility, Internet And High-Speed., IEEE802.11Abstract
Provision of internet service on university campuses has become essential and critical drivers to the progress and success of contemporary universities. Despite this intriguing technological advancement, universities are finding it challenging to provide the required quality of internet services to meet the high expectation of users on campus. Proper infrastructure, inadequate bandwidth, and effectiveness of internet service delivery achieve an optimal balance between available internet resources and the demands placed on internet resources. This paper set out to find out the state of internet infrastructures in the selected universities in Sunyani metropolis in Ghana. This paper conducted three significant investigations. A survey on user perception was conducted to ascertain the quality of user experience. A physical examination was also conducted. A wireless network analytical tool was deployed to examine the quality of 802.11 a/b/g/n wireless signal on the campuses of the selected university campuses. The results of the three investigations revealed a poor wireless network at the university campuses. The paper proposed a conceptual framework to improve the network infrastructure on university campuses.
Motivation/Background: This study was motivated by the number of studies in literature concerning the access, usage, and quality of internet service in Africa. The study was designed to examine the quality internet service and the quality of experience (QoE) of internet user in three universities in the Sunyani metropolis in relation to access, availability and quality of internet.
Method: An in SSIDer wireless signal analytics tool was used to examine the quality of signal strength on the selected University campuses. The tool has the ability to measure certain essential indicators used to determine the quality of signal strength, bandwidth, frequency and can report whether the signal is secure or insecure. The test was carried at several locations on the campuses at different times. The result of the test and simulation by the in SSIDer tool, the signal strength at the campuses indicated a weaker signal in all three campuses.
Results: The results obtained from the test conducted at the three University campuses revealed that the wireless signals propagated at the university campuses were very poor.
Conclusions: A conceptual framework has been designed to help reduce the signal attenuations significantly.
Downloads
References
Harald Haas, Cheng Chen, Dominic O’Brien (2017) A guide to wireless networking by light, Progress in Quantum Electronics, Volume 55, 2017, Pages 88-111, ISSN 0079-6727, https://doi.org/10.1016/j.pquantelec.2017.06.003. DOI: https://doi.org/10.1016/j.pquantelec.2017.06.003
Nyarko‐Boateng, O., Xedagbui, F. E. B., Adekoya, A. F., & Weyori, B. A. (2020). Fiber optic deployment challenges and their management in a developing country: A tutorial and case study in Ghana. Engineering Reports, 2(2), e12121. DOI: https://doi.org/10.1002/eng2.12121
Odero, D. J., & Mutula, S. M. (2007). Internet Access in Kenyan University Libraries. Malaysian Journal of Library & Information Science, 12(1), 65–81.
Owusu Nyarko-Boateng, Adebayo F. Adekoya and Benjamin A. Weyori (2019). Investigating QoS and Performance of Received Signal Strength Indicator in Fiber Optics Broadband Data Communication. AJEAS. DOI: 10.3844/ajeassp.2019.391.401; Volume 12, Issue 3. Pages 391-401
Penard, T., Poussing, N., Mukoko, B., Bertrand, G., & Piaptie, T. (2015). Technology in Society Internet adoption and usage patterns in Africa: Evidence from Cameroon. Technology in Society, 42(2015), 71–80. https://doi.org/10.1016/j.techsoc.2015.03.004 DOI: https://doi.org/10.1016/j.techsoc.2015.03.004
Pontes, H. M., Szabo, A., & Griffiths, M. D. (2015). The impact of Internet-based specific activities on the perceptions of Internet addiction, quality of life, and excessive usage: A cross-sectional study. Addictive Behaviors Reports, 1, 19–25. https://doi.org/10.1016/j.abrep.2015.03.002 DOI: https://doi.org/10.1016/j.abrep.2015.03.002
Nyarko-Boateng, O., & Adekoya, A. F. (2019). Evaluation and analysis of key performance indicators which affect the QoS of mobile call traffic. International Journal of Computer Networks (IJCN), 9 (1), 14-30
Ying Qu, Bryan Ng, Michael Homer (2017). A goodput distribution model for planning IEEE 802.11 WBNs in built environments, Journal of Network and Computer Applications, Volume 99, 2017, Pages 28-46, ISSN 1084-8045, https://doi.org/10.1016/j.jnca.2017.10.005. DOI: https://doi.org/10.1016/j.jnca.2017.10.005
Kadir, E. A., Siswanto, A., & Syukur, A. (2016, May). Performance analysis of wireless LAN 802.11 n standard for e-Learning. In 2016 4th International Conference on Information and Communication Technology (ICoICT) (pp. 1-6). IEEE. DOI: https://doi.org/10.1109/ICoICT.2016.7571948
Abd Ghafar, A., Kassim, M., Ya’acob, N., Mohamad, R., & Ab Rahman, R. (2020). QoS of Wi-Fi performance based on signal strength and channel for indoor campus network. Bulletin of Electrical Engineering and Informatics, 9(5), 2097-2108. DOI: https://doi.org/10.11591/eei.v9i5.2251
Mohamed, M. A. A. (2019). Development of Efficient Technologies for Multimedia Streaming over Wireless Networks (Doctoral dissertation, Mansoura University).
Published
How to Cite
Issue
Section
License
License and Copyright Agreement
In submitting the manuscript to the journal, the authors certify that:
- They are authorized by their co-authors to enter into these arrangements.
- The work described has not been formally published before, except in the form of an abstract or as part of a published lecture, review, thesis, or overlay journal.
- That it is not under consideration for publication elsewhere.
- That its release has been approved by all the author(s) and by the responsible authorities – tacitly or explicitly – of the institutes where the work has been carried out.
- They secure the right to reproduce any material that has already been published or copyrighted elsewhere.
- They agree to the following license and copyright agreement.
Copyright
Authors who publish with International Journal of Engineering Technologies and Management Research agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY-SA 4.0) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors can enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or edit it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) before and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
For More info, please visit CopyRight Section