PHOTOCATALYTIC OXIDATION OF LANDFILL LEACHATE USING UV/TiO2 WITH CATALYST RECOVERY
DOI:
https://doi.org/10.29121/ijetmr.v7.i8.2020.735Keywords:
Leachate, Oxidation Titanium Dioxide, PhotocatalyticAbstract
This project evaluated the use of titanium dioxide for leachate treatment and recovery of methods for TiO2, using a TiO2 recovery technology, which was high enough to be economical ($10 - $15 per 1,000 gallons) to be adopted by wastewater treatment plants. When comparing recovery technologies, the three which were investigated further through experimentation were a centrifuge, sedimentation tank, and microfilter membrane. Upon experimentation and research, the TiO2 recovery efficiencies of these technologies were 99.5%, 92.5%, and 96.3%, respectively. When doing economic analysis on these technologies comparing TiO2 efficiencies and capital and operational costs, the centrifuge was the most preferred economic option. It was found that costs were in the economical range ($10 - $15/1,000 gallons). TiO2: settling behavior, particle size and zeta potential, interactions with COD, and filter operations (particle characterization) were discovered for future research and future testing on this issue.
Downloads
References
Bhardwaj, Vipin. "Diatomaceous Earth Filtration for Drinking Water." National Drinking Water Clearinghouse, 2001, Page 2.
Burton, Franklin. "Suspended Growth Biological Processes." In Wastewater Engineering: Treatment and Reuse, 820 - 826. 4th ed. Crawfordsville, IN: McGraw-Hill Companies, 2003.
Cheremisinoff, Nicholas P. (2002). "Chapter 8". Handbook of water and wastewater treatment technologies ([Online-Ausg.] ed.). Boston: Butterworth-Heinemann.
Cho, I. H., Moon, I. Y., Chung, M. H., Lee, H. K., & Zoh, K. D. (2002). Disinfection effects on E. coli using TiO2/UV and solar light system. Water Science and Technology: Water Supply, 2(1), 181-190.
Cleland, A.J. "Determination of Shape of Kaolin Pigment Particles." Clay Minerals, 1992, Page 504.
Coffman, N. (2015). Recovering titanium dioxide (TiO 2) after its useto treat leachate for reuse on future leachate flows. (Masters thesis, Florida Atlantic University).
De Morais, J. L., & Zamora, P. P. (2005). Use of advanced oxidation processes to improve the biodegradability of mature landfill leachates. Journal of Hazardous Materials, 123(1-3), 181-186. DOI: https://doi.org/10.1016/j.jhazmat.2005.03.041
Dey, Tania. "Photocatalytic Degredation of Poorl Biodegradable Water Pollutions Using Titania (TiO2) Nanoparticles." In Nanotechnology for Water Purification, Page 118 - 119. Boca Raton, FL: BrownWalker Press, 2012.
Fang, H. H. P., Lau, I. W. C., & Wang, P. (2005). Anaerobic treatment of Hong Kong leachate followed by chemical oxidation. Water science and technology, 52(10-11), 41-49. DOI: https://doi.org/10.2166/wst.2005.0677
Farrah, S.R. "Use of Modified Diatomaceous Earth for Removal and Recovery of Viruses in Water." Applied and Environmental Microbiology, 1991, Page 2504.
Feitz, Andrew J., T. David Waite, Gary J. Jones, Brace H. Boyden, and Philip T. Orr. "Photocatalytic degradation of the blue green algal toxin microcystin-LR in a natural organic-aqueous matrix." Environmental science & technology 33, no. 2 (1999): 243-249. DOI: https://doi.org/10.1021/es970952d
Foo, K. Y., & Hameed, B. H. (2009). An overview of landfill leachate treatment via activated carbon adsorption process. Journal of hazardous materials, 171(1-3), 54-60. DOI: https://doi.org/10.1016/j.jhazmat.2009.06.038
Greenwood, R; Kendall, K. "Electroacoustic studies of moderately concentrated colloidal suspensions". Journal of the European Ceramic Society 19 (4) (1999). Page 479–488. DOI: https://doi.org/10.1016/S0955-2219(98)00208-8
Hamaguchi, Hatsuko. "Investigation of Options for Long-Term Leachate Management." 2008, Page 17.
Hemond, Harold. Chemical Fate and Transport in the Environment. 3rd ed. Vol. 1. San Diego, CA: Elsevier, 2015. Page 4-6, 62, 129-131.
Ibanez, Jorge. "Environmental Chemistry." In Alkalinity and Buffering Capacity of Water, Page 28-29. New York City, NY: Springer New York, 2008. DOI: https://doi.org/10.1007/978-0-387-49493-7_3
Kirby, B.J. Micro- and Nanoscale Fluid Mechanics: Transport in Microfluidic Devices. Cambridge University Press (2010). DOI: https://doi.org/10.1017/CBO9780511760723
Lakner, J. (2015). Safe Discharge of Landfill Leachate to the Environment. (Masters Thesis, Florida Atlantic University).
Lema, J. M., Mendez, R., & Blazquez, R. (1988). Characteristics of landfill leachates and alternatives for their treatment: a review. Water, Air, and Soil Pollution, 40(3-4), 223-250.
Li, Wengbing. "pH-responsive, TiO2-Attached Porphyrin for Singlet Oxygen Production in an Aqueous Solution." Applied Materials and Interfaces 1, no. 8 (2009). Page 1781. Accessed October, 2015. http://www.ncbi.nlm.nih.gov/pubmed/20209036.
McBarnette, A. (2011). Treatment of Landfill Leachate Via Advanced Oxidation (Doctoral dissertation, Florida Atlantic University).
Meeroff, D. E., & Teegavarapu, R. (2010). Interactive decision support tool for leachate management. Gainesville, FL: Hinkley Center for Solid and Hazardous Waste Management. http://www. hinkleycenter. org/images/stories/Meeroff_INTERACTIVE_DECISION_SUPPORT_TOOL. pdf.
Meeroff, D. E., Bloetscher, F., Reddy, D. V., Gasnier, F., Jain, S., McBarnette, A., & Hamaguchi, H. (2012). Application of photochemical technologies for treatment of landfill leachate. Journal of hazardous materials, 209, 299-307. DOI: https://doi.org/10.1016/j.jhazmat.2012.01.028
Meeroff, D. E., Lakner, J., Shaha, B., Walecki, E., Harris, A., & Meyer, L. (2016). Futuristic On-Site Leachate Management. In World Environmental and Water Resources Congress 2016 (pp. 1-10). DOI: https://doi.org/10.1061/9780784479865.001
Meeroff, D. E., & Lakner, J. (2014). Safe Discharge of Landfill Leachate to the Environment. Final Report for the William W.“Bill” Hinkley Center for Solid and Hazardous Waste Management, Gainesville, FL. Report.
Meeroff, D. E., Lakner, J., & Coffman, N. (2016). Safe Discharge of Landfill Leachate to the Environment Year 2 Final Report.
Mendez-Novelo, R. I., Castillo-Borges, E. R., Sauri-Riancho, M. R., Quintal-Franco, C. A., Giacoman-Vallejos, G., & Jimenez-Cisneros, B. (2005). Physico-chemical treatment of Merida landfill leachate for chemical oxygen demand reduction by coagulation. Waste management & research, 23(6), 560-564. DOI: https://doi.org/10.1177/0734242X05060145
Munter, R. (2001). Advanced oxidation processes–current status and prospects. Proc. Estonian Acad. Sci. Chem, 50(2), 59-80.
Parsons, Simon A.; Jefferson, Bruce (2006). "Chapter 4". Introduction to potable water treatment processes. Ames, Iowa: Blackwell Pub. Accessed June, 2015.
Parsons, Simon A.; Jefferson, Bruce (2006). "Chapter 4". Introduction to potable water treatment processes. Ames, Iowa: Blackwell Pub.
Peyton, G. R., & Glaze, W. H. (1988). Destruction of pollutants in water with ozone in combination with ultraviolet radiation. 3. Photolysis of aqueous ozone. Environmental science & technology, 22(7), 761-767.
Pinnau, Ingo. "Membranes for Water Treatment: Properties and Characterization." 2008, Page 18.
Piscopo, Antoine. "Influence of pH and Chloride Anion on the Photocatalytic Degradation of Organic Compounds Part I. Effect on the Benzamide and Para-hydroxybenzoic Acid in TiO2 Aqueous Solution." Applied Captalysis 35, no. 2 (2001). Page 119. Accessed May, 2015.
http://www.sciencedirect.com/science/article/pii/S0926337301002442.
Qasim, Syed. "Biological Waste Treatment." In Wastewater Treatment Plants: Planning, Design, and Operation, Page 449-450. Boca Raton, FL: CRC Press LLC, 1999.
Qasim, Syed. "Sedimentation." In Water Works Engineering: Planning, Design, and Operation, Page 302-303, 307. Upper Saddle River, NJ: Pearson Education, 2000.
Renou, S., Givaudan, J. G., Poulain, S., Dirassouyan, F., & Moulin, P. (2008). Landfill leachate treatment: review and opportunity. Journal of hazardous materials, 150(3), 468-493. DOI: https://doi.org/10.1016/j.jhazmat.2007.09.077
Schulte, P., Bayer, A., Kuhn, F., Luy, T., & Volkmer, M. (1995). H2O2/O3, H2O2/UV and H2O2/Fe2+ processes for the oxidation of hazardous wastes. DOI: https://doi.org/10.1080/01919519508547541
Thiruvenkatachari, Ramesh. "A Review on UV/TiO2 Photocatalytic Oxidation Process." Korean J. Chemical Engineering, 2008, Page 69-70. DOI: https://doi.org/10.1007/s11814-008-0011-8
Witharana, Sanjeeva. "Aggregation and Settling in Aqueous Polydisperse Alumina Nanoparticle Suspensions." Journal of Nanoparticle Research, 2012, Page 9. DOI: https://doi.org/10.1007/s11051-012-0851-3
Youngman, F. (2013). Optimization of TiO2 photocatalyst in an advanced oxidation process for the treatment of landfill leachate. (Masters thesis, Florida Atlantic University).
Published
How to Cite
Issue
Section
License
License and Copyright Agreement
In submitting the manuscript to the journal, the authors certify that:
- They are authorized by their co-authors to enter into these arrangements.
- The work described has not been formally published before, except in the form of an abstract or as part of a published lecture, review, thesis, or overlay journal.
- That it is not under consideration for publication elsewhere.
- That its release has been approved by all the author(s) and by the responsible authorities – tacitly or explicitly – of the institutes where the work has been carried out.
- They secure the right to reproduce any material that has already been published or copyrighted elsewhere.
- They agree to the following license and copyright agreement.
Copyright
Authors who publish with International Journal of Engineering Technologies and Management Research agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY-SA 4.0) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors can enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or edit it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) before and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
For More info, please visit CopyRight Section