EVALUATION OF GROWTH IN ATLANTIC WHITE SHRIMP LITOPENAEUS SETIFERUS (LINNAEUS, 1767) JUVENILES, USING BIOFLOC AS A FOOD SOURCE IN A CONTROLLED ENVIRONMENT

Authors

  • Eduardo Alfredo Zarza Mez Facultad de Ciencias Biológicas y Agropecuarias, Poza Rica-Tuxpan Región, Universidad Veracruzana, Carr. Tuxpan-Tampico Km. 7.5, Tuxpan, Veracruz, México, C. P. 92850, Tuxpan de Rodríguez Cano, Veracruz.
  • Jonathan Gómez Mundo Facultad de Ciencias Biológicas y Agropecuarias, Poza Rica-Tuxpan Región, Universidad Veracruzana, Carr. Tuxpan-Tampico Km. 7.5, Tuxpan, Veracruz, México, C. P. 92850, Tuxpan de Rodríguez Cano, Veracruz.
  • Rodrigo Cuervo González Facultad de Ciencias Biológicas y Agropecuarias, Poza Rica-Tuxpan Región, Universidad Veracruzana, Carr. Tuxpan-Tampico Km. 7.5, Tuxpan, Veracruz, México, C. P. 92850, Tuxpan de Rodríguez Cano, Veracruz.

DOI:

https://doi.org/10.29121/ijetmr.v7.i7.2020.715

Keywords:

Biofloc, Shrimp, Sustainable, Aquaculture, Parameters, Fertilization

Abstract

Biofloc is a new system, little known or applied in Mexico, that offers a high level of sustainability for aquaculture due to its great versatility in terms of nutrient recycling, which enables savings in feed costs and a significant reduction in water exchange. With the objective of evaluating the results of the use of Biofloc in aquaculture, a simulation of an aquaculture facility using Biofloc culture techniques was conducted under controlled laboratory conditions. The use of a combination of shrimp feed and refined sugar as a carbon source enabled the development of floccules, not only enabling the identification of those high-performing organisms and their development in the medium, but also facilitating shrimp capture in order to evaluate growth during each treatment. The treatments were undertaken in two different culture media, one in brackish water and the other in seawater, in which the length and weight of the animals was measured, with their behavior during the bioassay also recorded. It was found that the brackish medium enabled better shrimp development than the seawater medium, provided that the parameters and material in suspension are kept at stable levels, with the former medium providing shrimp an environment rich in food and free of pathogens.

Downloads

Download data is not yet available.

References

Arenas, F. V. Biodiversidad 2006: [actualizado 14 de octubre 2013]. http://www.biodiversidad.gob.mx/especies/Invasoras/pdf/talleres/SOBRE%20EXPLOTACION%20PPT%20ARENAS.pdf.; 2006

Avnimelech, Y. Feeding with microbial flocs by tilapia in minimal discharge bio-flocs technology ponds. Aquaculture; 2007, 264(5):140–147. DOI: https://doi.org/10.1016/j.aquaculture.2006.11.025

Ballester, E. L. C, Abreu, P.C, Cavalli, R.O, Emerenciano, M, De Abreu, L, Wasielesky JR. W. Acuaculture nutrition; 2010,16 163-172 DOI: https://doi.org/10.1111/j.1365-2095.2009.00648.x

Cedano, C. M. D., Lujan, B. A., Suarez, M, H. Crianza de Oreochromis niloticus var Chitralada en sistema Biofloc en la Empresa PRODUMAR SA, Guayaquil (Ecuador). Revista Científica de Estudiantes; 2013,1(2):79-91.

Cervantes, C. Efecto de la salinidad sobre algunas variables bioquímicas, inmunológicas, fisiológicas y productivas del camarón Litopenaeus vannamei cultivado experimentalmente”; 2011, Tesis de licenciatura. Instituto Politécnico Nacional. Guasave, Sinaloa, México.

CONAPESCA. Anuario estadístico de acuacultura y pesca. SAGARPA. D.F.; 2012, 296 p. México. 64

Cuellar, J. Manual de buenas prácticas de manejo para el cultivo del camarón blanco Penaeus vannamei. Organización del sector pesquero y acuícola del istmo centroamericano (OSPESCA) parte del sistema de la integración centroamericana (SICA). Panamá; 2010, 53

De Schryver, P. The basics of bio-flocs technology. The added value for aquaculture. Aquaculture; 2008, 277(2):125–137. DOI: https://doi.org/10.1016/j.aquaculture.2008.02.019

Dibello, R. J, C, Dassans, G. H. C.A. Crecimiento y sobrevivencia de Carpa Común (Cyprinus carpio) y Carassius (Carassius aurata) (Osteichthys, cyprinidae) en un sistema súper intensivo con la aplicación de Biofloc, comparando con sistema de filtro biológico y sistema tradicional con aireación; 2013, Tesis de Doctorado. Universidad de la Republica Montevideo, Uruguay

Ebeling, J. Engineering analysis of the stoichiometry of photoautotrophic, autotrophic, and heterotrophic removal of ammonia–nitrogen in aquaculture systems. Aquaculture; 2006, 257(4):346–358. 65 DOI: https://doi.org/10.1016/j.aquaculture.2006.03.019

Ekasari, j, Roselien, C, Willy, V. Primary Nutritional Content of Bio-Flocs Cultured with Different. Organic Carbon Sources and Salinity. HAYATI Journal of Biosciences; 2010, 17 (3):125-130 DOI: https://doi.org/10.4308/hjb.17.3.125

Emerenciano, M., Gaxiola, G., Cuzon, G. Biofloc Technology Applied To Shrimp Broodstock. The World Aquaculture Society, Baton Rouge, Louisiana, USA.; 2011, 16 (2):217-230.

Emerenciano, M. Biofloc Technology (BFT): A Review for Aquaculture Application and Animal Food Industry. Licensee InTech. 20(2):1-28 FAO, NACA, UNEP, WB, WWF, 2006. Principios internacionales para el cultivo responsable del camarón; 2012, 3.

Fenucci, J. Manual para la cría de camarones peneidos FAO departamento de pesca; 1988, pg.3. http://www.fao.org/docrep/field/003/AB466S/AB466S00.htm

Ferreira, S. G. Flocus microbianos como fonte de baterías prebióticas para o cultivo de Litopenaeus vannamei; 2014, Tesis de Maestría, Universidade Federal de Santa Catarina Centro de Ciencias Agrarias Departamento de aquicultura Programa de Pos-Graduacao em Aquicultura, Florianópolis.

Hargreaves, J. Biofloc Production Systems for Aquaculture. Southern Regional Aquaculture Center. SRAC Publication; 2013, 45 (3):1-10.

Kjerfve, B. Comparative oceanography of coastal logons; 1986, 63-81. Academic Press, Inc. (ed) For Marine Biology and coastal research. Columbia, South Carolina DOI: https://doi.org/10.1016/B978-0-12-761890-6.50009-5

López, O. M., Pulido, F. G., Serrano, S.A., Gaytan, O.J.C., Monks, S. W. S., López, J. M. A. Evaluación estacional de las variables fisicoquímicas del agua de la Laguna de Tampamachoco, Veracruz, México. Revista Científica UDO Agrícola; 2012, 12 (3):713-719.

Martínez, Córdova. L.R. Cultivo de camarones peneidos AGT editor. S. A. D.F.;1999, 283, México.

Martínez, L. Camaronicultura mexicana y Mundial: ¿Actividad sustentable o industria contaminante? Revista Internacional de Contaminación Ambiental; 2009, 25(3):181-196.

Martínez, C. L. Alimento natural en acuacultura: una revisión actualizada. Avances en Nutrición Acuícola X Memorias del X Simposio Internacional de Nutrición Acuícola Universidad Autónoma de Nuevo León, Monterrey, México; 2010, 23(3):668-699. 67

Megahead, M. E. The effect of microbial Biofloc on Water Quality, survival and growth of the green Tiger Shrimp (Penaeus semisulcatus) Fed with Different crude protein levels; 2010.

Morales, Q. V, Cuellar, A. J. 2008. Guía Técnica Patología e Inmunología de Camarones Penaideos. CYTED Panama; 2008, 270.

Panjaitan, P. Shrimp culture of Penaeus monodon with zero water Exchange model (zwem) using molasses. Journal of Coastal Development; 2010, 14 (1):35-44.

Pertuz, V. 2013. Indicadores de calidad del floc: Interacción de los microorganismos del floc y comportamiento de las variables físico-químicas de calidad de agua en sistemas bft. Universidad de Córdoba 68 centro de investigación piscícola de la Universidad de córdoba. CINPIC. Mosquera, Colombia; 2013, 72

Sáenz, V. D. Comparación de sobrevivencia de alevines de tilapia en agua fertilizada en relación carbono: nitrógeno de 9, 16 y 23; 2013, Tesis de Licenciatura. Universidad de la Republica. Montevideo Uruguay.

Downloads

Published

2020-08-05

How to Cite

Zarza Mez, E. A., Mundo, J. G., & González, R. C. (2020). EVALUATION OF GROWTH IN ATLANTIC WHITE SHRIMP LITOPENAEUS SETIFERUS (LINNAEUS, 1767) JUVENILES, USING BIOFLOC AS A FOOD SOURCE IN A CONTROLLED ENVIRONMENT. International Journal of Engineering Technologies and Management Research, 7(7), 89–96. https://doi.org/10.29121/ijetmr.v7.i7.2020.715