DEVELOPMENT OF ARTIFICIAL NEURAL NETWORK STRUCTURES FOR PREDICTING NAVIGATION TASKS OF A MOBILE ROBOT

Authors

  • Irem Sahmutoglu Industrial Engineering, Yildiz Technical University, Turkey
  • Erhan AKDOGAN Mechatronics Engineering, Yildiz Technical University, Turkey

DOI:

https://doi.org/10.29121/ijetmr.v7.i3.2020.553

Keywords:

Artificial Neural Network, Robot Navigation, SCITOS G5

Abstract

Determining trajectories in mobile robot navigation tasks is a difficult process to apply with conventional methods. Therefore, intelligent techniques produce highly effective results in trajectory optimization and orientation prediction. In this study, two different ANN (Artificial Neural Network) structures have been developed for the navigation prediction of the SCITOS G5 mobile robot. For this aim, RBF (Radial Basis Function) and MLP (Multi-Layer Perceptron) structures were used. Information obtained from 24 sensors of the robot was used as network inputs and network output determines robot direction. Accordingly, structures that have 24 inputs and one output were created. The best performance network structures obtained were compared among them in simulation environment. Accordingly, RBF has been observed to produce more accurate results than MLP.

Downloads

Download data is not yet available.

References

Sigalas, M. Baltzakis, H., & Trahanias, P. Temporal gesture recognition for human-robot interaction. Month, 2010.

P. C. Giulianotti. Robotics in general surgery. Robotics in General Surgery, 138(July 2003), 2014, 1–511. DOI: https://doi.org/10.1001/archsurg.138.7.777

Gul, F., Rahiman, W., & Nazli Alhady, S. S. A comprehensive study for robot navigation techniques. Cogent Engineering, 6(1), 2019, 1–25. DOI: https://doi.org/10.1080/23311916.2019.1632046

M. Knudson and K. Tumer. Adaptive Navigation for Autonomous Robots, Robotics and Autonomous Systems, 59, 2011, 410–420. DOI: https://doi.org/10.1016/j.robot.2011.02.004

Eski, I., & Yildirim, Ş. Design of neural network control system for controlling trajectory of autonomous underwater vehicles. International Journal of Advanced Robotic Systems, 11(1), 2014. DOI: https://doi.org/10.5772/56740

Fabiani, P., Fuertes, V., Piquereau, A., Mampey, R., & Teichteil-Königsbuch, F. Autonomous flight and navigation of VTOL UAVs: from autonomy demonstrations to out-of-sight flights. Aerospace Science and Technology, 11(2–3), 2007, 183–193. DOI: https://doi.org/10.1016/j.ast.2006.05.005

N. Najmaei and M. R. Kermani, "Applications of Artificial Intelligence in Safe Human–Robot Interactions," in IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 41, no. 2, 2011, 448-459. DOI: https://doi.org/10.1109/TSMCB.2010.2058103

Mendes Júnior, J. J. A., Pires, M. B., Vieira, M. E. M., Okida, S., & Stevan Jr, S. L. Neural Network to Failure Classification in Robotic Systems. Brazilian Journal of Instrumentation and Control, 4(1), 1, 2016. DOI: https://doi.org/10.3895/bjic.v4n1.4663

Kruse, T., Pandey, A. K., Alami, R., & Kirsch, A. Human-aware robot navigation: A survey. Robotics and Autonomous Systems, 61(12), 2013, 1726–1743. DOI: https://doi.org/10.1016/j.robot.2013.05.007

Panigrahi, P. K., Ghosh, S., & Parhi, D. R. Intelligent Leaning and Control of Autonomous Mobile Robot using MLP and RBF based Neural Network in Clustered Environment. 5(6), 2014, 313–316.

Shinzato, P. Y., Fernandes, L. C., Osorio, F. S., & Wolf, D. F. Path recognition for outdoor navigation using artificial neural networks: Case study. Proceedings of the IEEE International Conference on Industrial Technology, https://doi.org/10.1109/ICIT.2010.5472489, 2010, 1457–1462. DOI: https://doi.org/10.1109/ICIT.2010.5472489

Shinzato, P. Y., & Wolf, D. F. A road following approach using artificial neural networks combinations. Journal of Intelligent and Robotic Systems: Theory and Applications, 62(3–4), https://doi.org/10.1007/s10846-010-9463-2, 2011, 527–546. DOI: https://doi.org/10.1007/s10846-010-9463-2

Dezfoulian, S. H., Wu, D., & Ahmad, I. S. A generalized neural network approach to mobile robot navigation and obstacle avoidance. Advances in Intelligent Systems and Computing, 193 AISC (VOL. 1), 2013. DOI: https://doi.org/10.1007/978-3-642-33926-4_3

Wang, X., Hou, Z. G., Lv, F., Tan, M., & Wang, Y. Mobile robots’ modular navigation controller using spiking neural networks. Neurocomputing, 134, DOI: https://doi.org/10.1016/j.neucom.2013.07.055

https://doi.org/10.1016/j.neucom.2013.07.055, 2014, 230–238. DOI: https://doi.org/10.1016/j.neucom.2013.07.055

Malleswaran, M., Angel Deborah, S., Manjula, S., & Vaidehi, V. Integration of INS and GPS using radial basis function neural networks for vehicular navigation. 11th International Conference on Control, Automation, Robotics and Vision, ICARCV 2010, (December), DOI: https://doi.org/10.1109/ICARCV.2010.5707295

https://doi.org/10.1109/ICARCV.2010.5707295, 2010, 2427–2430. DOI: https://doi.org/10.1109/ICARCV.2010.5707295

Budianto, A., Pangabidin, R., Syai’In, M., Adhitya, R. Y., Subiyanto, L., Khumaidi, A., Soelistijono, R. T. Analysis of artificial intelligence application using back propagation neural network and fuzzy logic controller on wall-following autonomous mobile robot. 2017 International Symposium on Electronics and Smart Devices, ISESD 2017, 2018-January (1), . DOI: https://doi.org/10.1109/ISESD.2017.8253306

https://doi.org/10.1109/ISESD.2017.8253306, 2017, 62–66. DOI: https://doi.org/10.1109/ISESD.2017.8253306

Dash, T., Nayak, T., & Swain, R. R. Controlling wall following robot navigation based on gravitational search and feed forward neural network. ACM International Conference Proceeding Series, 26-27-February-2015, https://doi.org/10.1145/2708463.2709070, 2015, 196–200. DOI: https://doi.org/10.1145/2708463.2709070

Ozbay Karakus, M., & Er, O. Learning of Robot Navigation Tasks by Probabilistic Neural Network, https://doi.org/10.5121/csit.2013.3803, 2013, 23–34. DOI: https://doi.org/10.5121/csit.2013.3803

Larasati, N., Dewi, T., & Oktarina, Y. Object Following Design for a Mobile Robot using Neural Network. Computer Engineering and Applications Journal, 6(1), DOI: https://doi.org/10.18495/comengapp.v6i1.189

https://doi.org/10.18495/comengapp.v6i1.189, 2017, 5–14. DOI: https://doi.org/10.18495/comengapp.v6i1.189

Dash, T., Soumya, R. S., Nayak, T., & Mishra, G. (2015). Neural network approach to control wall-following robot navigation, ICACCCT, 2014. DOI: https://doi.org/10.1109/ICACCCT.2014.7019262

Faisal, M., Hedjar, R., Al Sulaiman, M., & Al-Mutib, K. Fuzzy Logic Navigation and Obstacle Avoidance by a Mobile Robot in an Unknown Dynamic Environment. International Journal of Advanced Robotic Systems, 2013. DOI: https://doi.org/10.5772/54427

Singh, N. H., & Thongam, K. Mobile Robot Navigation Using MLP-BP Approaches in Dynamic Environments. Arabian Journal for Science and Engineering, 43(12), DOI: https://doi.org/10.1007/s13369-018-3267-2

https://doi.org/10.1007/s13369-018-3267-2, 2018, 8013–8028. DOI: https://doi.org/10.1007/s13369-018-3267-2

Mucientes, M., Moreno, D. L., Bugarín, A., & Barro, S. Design of a fuzzy controller in mobile robotics using genetic algorithms. Applied Soft Computing Journal, 2007, 540–546. DOI: https://doi.org/10.1016/j.asoc.2005.05.007

S. F. Desouky and H. M. Schwartz, "Genetic based fuzzy logic controller for a wall-following mobile robot," 2009 American Control Conference, St. Louis, 2009, 3555-3560. DOI: https://doi.org/10.1109/ACC.2009.5159805

A. Frank, A. Asuncion, “UCI Machine Learning Repository,” 2010.

Bishop, C.M., Neural Networks for Pattern Recognition. Oxford University Press Inc. New York, NY, ISBN: 0198538642, 1995.

Kashaninejad M. ve Dehghani A.A., Kashiri M., Modeling of wheat soaking using two artificial neural networks (MLP and RBF), Journal of Food Engineering, 2009, 602–607. DOI: https://doi.org/10.1016/j.jfoodeng.2008.10.012

Celikoglu H.B. ve Cigizoglu H.K., “Modelling public transport trips by radial basis function neural networks,” Mathematical and Computer Modelling, 2007, 480–489. DOI: https://doi.org/10.1016/j.mcm.2006.07.002

Yu, B., He, X., Training radial basis function networks with differential evolution. In: Proceedings of IEEE International Conference on Granular Computing, Atlanta, USA, 2006.

Hwang Y.S. ve Bang S.Y., “An Efficient Method to Construct a Radial Basis Function Neural Network Classifier,” 1996. DOI: https://doi.org/10.1016/S0893-6080(97)00002-6

Downloads

Published

2020-03-31

How to Cite

Sahmutoglu, I., & AKDOGAN, E. (2020). DEVELOPMENT OF ARTIFICIAL NEURAL NETWORK STRUCTURES FOR PREDICTING NAVIGATION TASKS OF A MOBILE ROBOT. International Journal of Engineering Technologies and Management Research, 7(3), 42–50. https://doi.org/10.29121/ijetmr.v7.i3.2020.553