• Mr.A. ARISTATIL Research scholar, Department of Mathematics, SPIHER, Avadi, Chennai-54
  • Mr.M.V.SURESH Assistant Professor, Department of Mathematics, SPIHER, Avadi, Chennai-54



degree, capriciousness, Eccentric-network record ξ(G), Eccentric availability polynomial ECP(G, x), Connective Eccentric list Cξ (G), precious stone cubic carbon


Chemical diagram hypothesis fathoms the essential properties of a nuclear chart. The sub-nuclear outlines are the charts that are involved particles called vertices and the covalent bond between them are called edges. The unusualness ɛu of vertex u in a related diagram G, is the partition among u and a vertex farthermost from u. In this article, we consider the valuable stone structure of cubic carbon and enrolled Eccentric-network list ξ(G), Eccentric availability polynomial ECP(G, x) and Connective Eccentric list Cξ (G) of pearl structure of cubic carbon for n-levels.


Download data is not yet available.


1. Randi´c, M. On characterization of molecular branching. J. Am. Chem. Soc. 1975, 97, 6609– 6615. [CrossRef]
2. Gutman, I.; Trinajst´c, N. Graph theory and molecular orbitals., Total p-electron energy of alternant hydrocarbons. Chem. Phys. Lett. 1972, 17, 535–538. [CrossRef]
3. Bonchev, D. Handbook of Graph Theory, Chemical Graph Theory; Virginia Commonwealth University: Richmond, VA, USA, 2013; Section 13.
4. Asadpour, J.; Safikhani, L. Study of CNC7[n] Carbon Nanocone by M-Eccentric Connectivity Polynomial.Aust. J. Basic Appl. Sci. 2013, 7, 883.
5. De, N.; Nayeem, S.M.A.; Pal, A. Total eccentricity index of the generalized index and polynomial of thorn graph. Appl. Math. 2012, 3, 931–934. [CrossRef]
6. Huo, Y.; Lio, J.B.; Baig, A.Q.; Sajjad, W.; Farahani, M.H. Connective Eccentric Index of NAnm Nanotube. J. Comput. Theor. Nanosci. 2017, 14, 1832–1836. [CrossRef]
7. Wiener, H. Structural determination of paraffin boiling points. J. Am. Chem. Soc. 1947, 69, 17–20. [CrossRef][PubMed]
8. Sharma, V.; Goswami, R.; Madan, A.K. Eccentric connectivity index: A novel highly discriminating topological descriptor for structure-property and structure-activity studies. J. Chem. Inf. Comput. Sci. 1997, 37, 273–282.[CrossRef]
9. Alaeiyan, M.; Mojarad, R.; Asadpour, J. A new method for computing eccentric connectivity polynomial of an infinite family of linear polycene parallelogram benzenod. Optoelectron. Adv. Mater.-Rapid Commun. 2011,5, 761–770.
10. Bindusree, A.R.; Lokesha, V.; Ranjini, P.S. Eccentric connectivity index and polynomial of some graphs. Br. J.Math. Comput. Sci. 2015, 6, 457–467. [CrossRef]
11. Gupta, S.; Singh, M.; Madan, A.K. Connective eccentricity index: a novel topological descriptor for predicting biological activity. J. Mol. Graph Model 2000, 18, 18–25. [CrossRef]
12. Gupta, S.; Singh, M.; Madan, A.K. Application of Graph Theory: Relationship of Eccentric Connectivity Index and Wiener’s Index with Anti-inflammatory Activity. J. Math. Anal. Appl. 2002, 266, 259–268. [CrossRef]
13. Ramane, H.S.; Jummannaver, R.B. Note on forgotten topological index of chemical structure in drugs. Appl. Math. Nonlinear Sci. 2016, 1, 369–374. [CrossRef]
14. Gao, W.; Imran, M.; Siddiqui, M.K.; Naeeme, M.; Jamil, F. Molecular Description of Copper (I) Oxide and Copper (II) Oxide. Quimica Nova 2018, 41, 874–879. [CrossRef]
15. Baig, A.Q.; Imran, M.; Khalid, W.; Naeem, M. Molecular description of carbon graphite and crystal cubic carbon structures. Can. J. Chem. 2017, 95, 674–686. [CrossRef]
16. Balaban, A.T.; Quintas, L.V. The smallest graphs, trees, and 4-trees with degenerate topological index.J. Math. Chem. 1983, 14, 213–233.
17. Graovac, A.; Ghorbani, M.; Hosseinzadeh, M.A. Computing fifth geometric-arithmetic index for nanostar dendrimers. J. Math. Nanosci. 2011, 1, 33–42.
18. Gutman, I.; Polansky, O.E. Mathematical Concepts in Organic Chemistry; Springer: New York, NY, USA, 1986.




How to Cite

ARISTATIL, M., & SURESH, M. (2019). DEGREE-DISTANCE BASED TOPOLOGICAL INDICES OF PRECIOUS STONE CUBIC CARBON STRUCTURE. International Journal of Engineering Technologies and Management Research, 6(12), 101–110.