A QUANTUM CHEMICAL STUDY ON ELUCIDATION OF MOLECULAR STRUCTURE, ELECTRIC MOMENTS AND VIBRATIONAL ANALYSES OF BETA-DAMASCENONE AND ITS ISOMER- A COMPARATIVE STUDY

Authors

  • Amarendra Kumar Department of Physics, Lucknow University, Lucknow-226007, India

DOI:

https://doi.org/10.29121/ijetmr.v4.i10.2017.114

Keywords:

Density Functional Theory, Frontier Orbital Energy Gap, Isomers, Damascenone

Abstract

A comparative, quantum chemical study on of energies, dipole moment and vibrational wavenumbers of trans- beta-Damascenone and cis-beta-Damscenone was carried out by using B3LYP methods with 6-311+G(d,p) and 6-311++G(d,p) basis sets. A complete vibrational analysis of both the compounds has been performed and assignments are made on the basis of potential energy distribution. The frontier orbitals and molecular electrostatic potential surface study has also been employed to understand the active sites of title compounds. The calculation of the IR spectra is not only important in order to confirm the validity of the simulations but it also allows additional insight into the molecular level of the system not accessible from experiment. Therefore, simulated IR and Raman spectra of the title compounds are also presented in this study. The structure activity relationship based on the study of frontier orbital gap, dipole moment data along with the molecular electrostatic potential map of the title compounds have been used to understand the active sites of the molecules.

Downloads

Download data is not yet available.

References

Rose (Rosa damascena) (http://www.leffingwell.com/rose.htm), John C. Leffingwell

The Synthesis of Damascenone and beta Damascone and the possible mechanism of their formation from carotenoids". Helvetica Chimica Acta 56 (5): 1514–1516. DOI: https://doi.org/10.1002/hlca.19730560508

Characterization of the Most Odor Active Compounds in an American Bourbon Whisky by Application of the Aroma Extract Dilution Analysis". J. Agric. Food Chem 56 (14): 5813–5819. DOI: https://doi.org/10.1021/jf800382m

Comparison of Aroma Active Volatiles in Oolong Tea Infusions Using GC Olfactometry, GCFPD and GCMS. J Agric Food Chem. 2015 Sep 2;63 (34):7499510. DOI: https://doi.org/10.1021/acs.jafc.5b02358

Buttery, R. G., Teranishi, R. & Ling, L. C., 1988. Identification of damascenone in tomato volatiles. Chem. Industr. (London), 238.

Guth, H., 1997. Quantification and sensory studies of character impact odorants of different white wine varieties. J. Agric. Food Chem. 45, 3027-3032. DOI: https://doi.org/10.1021/jf970280a

Hartmann, P. J., McNair, H. M. & Zoecklein, B. W., 2002. Measurement of 3-alkyl-2- methoxypyrazine by headspace solid-phase microextraction in spiked model wines. Am. J. Enol.Vitic. 53, 285-288.

Kotseridis, Y. & Baumes, R., 2000. Identification of impact odorants in Bordeaux red grape juice, in the commercial yeast used for its fermentation, and in the produced wine. J. Agric. FoodChem. 48, 400-406. DOI: https://doi.org/10.1021/jf990565i

W. Kohn, L.J. Sham, Phys. Rev. 140 (1965) A1133. DOI: https://doi.org/10.1103/PhysRev.140.A1133

W. Kohn, L.J. Sham, Phys. Rev. 140 (1965) A1133. DOI: https://doi.org/10.1103/PhysRev.140.A1133

C. Lee, W. Yang, R.G. Parr, Phys. Rev. B37 (1988) 785. DOI: https://doi.org/10.1103/PhysRevB.37.785

B. Miehlich, A. Savin, H. Stoll, H. Preuss, Chem. Phys. Lett. 157 (1989) 200. DOI: https://doi.org/10.1016/0009-2614(89)87234-3

Gaussian 03, Revision C.01, M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery, Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K.Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople, Gaussian, Inc., Wallingford CT, 2004.

A.P. Scott, L. Random, J. Phys. Chem. 100 (1996) 16502. DOI: https://doi.org/10.1021/jp960976r

R. Dennington, T. Keith, J. Millam, K. Eppinnett, W.L. Hovell, R. Gilliland, GaussView, Version 3.07, Semichem, Inc., Shawnee Mission, KS, 2003.

M.H. Jamroz, Vibrational Energy Distribution Analysis: VEDA 4 Program, Warsaw, 2004.

Mark Ladd, Introduction to Physical Chemistry, third ed., Cambridge University Press, 1998 (Chapter 6). DOI: https://doi.org/10.1017/CBO9781139170925

F.H. Allen, O. Kennard, D.G. Watson, J. Chem. Soc. Perkin Trans. 2 (1987). 12, S1. DOI: https://doi.org/10.1039/p298700000s1

I. Fleming, Frontier Orbitals and Organic Chemical Reactions, John Wiley and Sons, New York,1976.

A.P. Scott, L. Random, J. Phys. Chem. 100 (1996) 16502. DOI: https://doi.org/10.1021/jp960976r

P. Pulay, G. Fogarasi, G. Pongor, J.E. Boggs, A. Vargha, J. Am. Chem. Soc. 105 (1983) 7037 DOI: https://doi.org/10.1021/ja00362a005

Downloads

Published

2017-10-31

How to Cite

Kumar, A. (2017). A QUANTUM CHEMICAL STUDY ON ELUCIDATION OF MOLECULAR STRUCTURE, ELECTRIC MOMENTS AND VIBRATIONAL ANALYSES OF BETA-DAMASCENONE AND ITS ISOMER- A COMPARATIVE STUDY. International Journal of Engineering Technologies and Management Research, 4(10), 123–136. https://doi.org/10.29121/ijetmr.v4.i10.2017.114