MHD FREE CONVECTION BOUNDARY LAYER FLOW OF A NANO FLUID OVER A PERMEABLE SHRINKING SHEET WITH NTH ORDER CHEMICAL REACTION

Authors

  • S.Anuradha Professor and Head, Department of Mathematics, Hindusthan College of Arts and Science, Coimbatore
  • M.Yegammai Assistant Professor, Department of Mathematics, Hindusthan College of Arts and Science, Coimbatore

DOI:

https://doi.org/10.29121/ijetmr.v4.i9.2017.94

Keywords:

Nanofluid, Shrinking Sheet, Magnetic Field, Thermal Radiation, Chemical Reaction, Method of Lines

Abstract

An analysis is presented to study the free convective unsteady magnatohydrodynamic boundary layer flow of a Nano fluid over a permeable shrinking sheet in the presence of nth order chemical reaction. Magnetic field of varying strength is applied normal to the sheet. The Nano fluid model under consideration includes Brownian motion, thermophoresis effects and nth order chemical reaction. The governing partial differential equations are transformed into a set of ordinary differential equations by applying the local similarity transformations and then the highly coupled nonlinear differential equations are solved by the method of lines. The effect of various controlling flow parameters on the dimensionless velocity, temperature and nanoparticle volume fraction profiles are analyzed.

Downloads

Download data is not yet available.

References

Bhattacharyya S.N and Gupta, A.S, 1985,”On the stability of viscous Flow over a stretching sheet”, Quarterly Applied Mathematics, 43, pp. 359-367. DOI: https://doi.org/10.1090/qam/814233

Gupta, P.S and Gupta, A.S, 1977, “Heat and mass transfer on a stretching sheet with suction and blowing”, Canadian Journal of Chemical Engineering, 55, pp. 744-746. DOI: https://doi.org/10.1002/cjce.5450550619

Cheng, W.T and Lin, H.T, 2002, “Non-similarity solution and correlation of transient heat transfer in laminar boundary layer flow over a wedge”, International journal of Engineering Science, 40, pp. 531 - 539. DOI: https://doi.org/10.1016/S0020-7225(01)00081-7

Crane, L.J. ‘‘Flow past a stretching plate’’, ZAMP, 21, pp. 645–655 (1970). DOI: https://doi.org/10.1007/BF01587695

Carragher, P. and Carane, L.J. ‘‘Heat transfer on a continuous stretching sheet’’, Z.Angew. Math. Mech., 62, pp. 564–565 (1982). DOI: https://doi.org/10.1002/zamm.19820621009

Ariel, P.D., Hayat, T. and Ashgar, S. ‘‘the flow of an elasto-viscous fluid past a stretching sheet with partial slip’’, Acta Mech., 187, pp. 29–35 (2006). DOI: https://doi.org/10.1007/s00707-006-0370-3

Nadeem, S., Hussain, A., Malik, M.Y. and Hayat, T. ‘‘Series solutions for the stagnation flow of a second-grade fluid over a shrinking sheet’’, Appl. Math. Mech., 30(10), pp. 1255–1262 (2009). DOI: https://doi.org/10.1007/s10483-009-1005-6

Nadeem, S., Hussain, A. and Khan, M. ‘‘Stagnation flow of a Jeffrey fluid over a shrinking sheet’’, Z. Naturforsch., 65a, pp. 540–548 (2010). DOI: https://doi.org/10.1515/zna-2010-6-709

Hayat, T. and Qasim, M. ‘‘Radiation and magnetic field effects on the unsteady mixed convection flow of a second grade fluid over a vertical stretching sheet’’, Int. J. Numer. Methods Fluids, 66(7), pp. 820–832 (2010). DOI: https://doi.org/10.1002/fld.2285

Nadeem, S. and Faraz, N. ‘‘Thin film flow of a second grade fluid over a stretching/shrinking sheet with variable temperature-dependent viscosity’’, Chin. Phys. Lett., 27(3), p. 034704 (2010). DOI: https://doi.org/10.1088/0256-307X/27/3/034704

Ishak, A., Nazar, R. and Pop, I. ‘‘Heat transfer over an unsteady stretching permeable surface with prescribed wall temperature’’, Nonlinear Anal.RWA, 10, pp. 2909–2913 (2009). DOI: https://doi.org/10.1016/j.nonrwa.2008.09.010

Hayat, T., Shehzad, S.A., Qasim, M. and Obaidat, S. ‘‘Steady flow of Maxwell fluid with convective boundary conditions’’, Z. Naturforsch., 66a, pp. 417–422 (2011). DOI: https://doi.org/10.1515/zna-2011-6-706

Wang, C. and Pop, I. ‘‘Analysis of the flow of a power-law fluid film on an unsteady stretching surface by means of homotopy analysis method’’,J. Non-Newtonian Fluid Mech., 138, pp. 161– 172 (2006). DOI: https://doi.org/10.1016/j.jnnfm.2006.05.011

Magyari, E. and Keller, B. ‘‘Heat and mass transfer in the boundary layers on an exponentially stretching continuous surface’’, J. Phys. Appl. Phys., 32, pp. 577–585 (1999). DOI: https://doi.org/10.1088/0022-3727/32/5/012

Partha, M.K., Murthy, P.V. and Rajasekhar, G.P. ‘‘Effect of viscous dissipation on the mixed convection heat transfer from an exponentially stretching surface’’, Heat Mass Transf., 41, pp. 360–366 (2005). DOI: https://doi.org/10.1007/s00231-004-0552-2

Elbashbeshy, E.M.A. ‘‘Heat transfer over an exponentially stretching continuous surface with suction’’, Arch. Mech., 53, pp. 643–651 (2001).

MachaMadhu and Naikoti Kishan, “Magnetohydrodynamic Mixed Convection Stagnation-Point Flow of a Power-Law Non-Newtonian Nanofluid towards a Stretching Surface with Radiation and Heat Source/Sink”. Journal of Fluids .Volume 2015, Article ID 634186, 14 pages .http://dx.doi.org/10.1155/2015/634186. DOI: https://doi.org/10.1155/2015/634186

Wang CY (1990). “Liquid film on an unsteady stretching sheet”. Quarterly of Applied Mathematics 48, pp. 601-610. DOI: https://doi.org/10.1090/qam/1079908

Miklavcic M, Wang CY (2006). “Viscous flow due to a shrinking sheet”. Quarterly of Applied Mathematics 64(2), pp. 283-290. DOI: https://doi.org/10.1090/S0033-569X-06-01002-5

Hayat T, Abbas Z, Ali N (2008). “MHD flow and mass transfer of a upper convected Maxwell fluid past a porous shrinking sheet with chemical reaction species”. Physics Letters A 372(26), pp. 4698-4704. DOI: https://doi.org/10.1016/j.physleta.2008.05.006

Hayat T, Abbas Z, Sajid M (2007).” On the analytic solution of magnetohydrodynamic flow of a econd grade fluid over a shrinking sheet”. Journal of Applied Mechanics, Trans. ASME 74(6), pp. 1165-1171. DOI: https://doi.org/10.1115/1.2723820

D. A. Nield, and A. V. Kuznetsov, “The Cheng–Minkowycz problem for natural convective boundary-layer flow in a porous medium saturated by a nanofluid”, International Journal of Heat and Mass Transfer, vol. 52, pp. 5792-5795, 2009a. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2009.07.024

D. A. Nield, and A. V. Kuznetsov, “Thermal instability in a porous medium layer saturated by a nanofluid”, International Journal of Heat and Mass Transfer, vol. 52, pp. 5796–5801, 2009b. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2009.07.023

A. J. Chamkha, R. S. R. Gorla, and K. Ghodeswar, “Non-similar solution for natural convective boundary layer flow over a sphere Transport in Porous Media, vol. 86, pp. 13-22, 2011. DOI: https://doi.org/10.1007/s11242-010-9601-0

D. A. Nield, and A. V. Kuznetsov, “The Cheng–Minkowycz problem for the double-diffusive natural convective boundary layer flow in a porous medium saturated by a nanofluid”, International Journal of Heat and Mass Transfer, vol. 54, pp. 374-378, 2011. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2010.09.034

R. S. R. Gorla, and A. J. Chamkha, “Natural convective boundary layer flow over a horizontal plate embedded in a porous medium saturated with a nanofluid”, Journal of Modern Physics, vol. 2, pp.62-71, 2011. DOI: https://doi.org/10.4236/jmp.2011.22011

Hunegnaw Dessie, Naikoti Kishan, “Unsteady MHD Flow of Heat and Mass Transfer of Nanofluids over Stretching Sheet with a Non-Uniform Heat/Source/Sink Considering Viscous Dissipation and Chemical Reaction”, International Journal of Engineering Research in Africa, Vol.14,pp. 1-12. 2015. DOI: https://doi.org/10.4028/www.scientific.net/JERA.14.1

Pavlov, KB: “Magnetohydromagnetic flow of an incompressible viscous fluid caused by deformation of a surface” .Magn. Gidrodin. 4, 146-147 (1974).

Jafar, K, Nazar, R, Ishak, a, Pop, I: “MHD flow and heat transfer over stretching/shrinking sheets with external magnetic field, viscous dissipation and Joule effects”. Can. J. Chem. Eng. 99, 1-11 (2011).

Samir kumarNandy,Sumanta Sidui,Tapas Ray Mahapatra: “Unsteady MHD boundary layer flow and heat transfer of nanofluid over a permeable shrinking sheet in the presence of thermal radiation.” Alxendria eng.journal (2014) 53,929-937. DOI: https://doi.org/10.1016/j.aej.2014.09.001

Brewster M.Q, “Thermal Radiative Transfer Properties”, Wiley, Newyork, 1972.

Vajravelu K., Prasad K.V, Datti P.S, Raju B.T, “MHD flow and heat transfer of an Ostwald-de Waele fluid over an unsteady stretching surface.” Ain Shams Eng.J.5 (1) (2014) 157-167. DOI: https://doi.org/10.1016/j.asej.2013.07.009

Anuradha S, Priyadharshini P, “MHD Free Convection Boundary Layer Flow of a Nanofluid overa Permeable Shrinking Sheet in the Presence of Thermal Radiation and Chemical Reaction” Chemical and Process Engineering Research , Vol.46 (2016)

Downloads

Published

2017-09-30

How to Cite

Anuradha, S., & Yegammai, M. (2017). MHD FREE CONVECTION BOUNDARY LAYER FLOW OF A NANO FLUID OVER A PERMEABLE SHRINKING SHEET WITH NTH ORDER CHEMICAL REACTION . International Journal of Engineering Technologies and Management Research, 4(9), 1–12. https://doi.org/10.29121/ijetmr.v4.i9.2017.94