ENERGY ANALYSIS OF A SOLAR-OPERATED SWEEPING GAS MEMBRANE DISTILLATION SYSTEM INTEGRATED WITH DIFFERENT WATER VAPOR CONDENSATION CONFIGURATIONS

Authors

  • Abdullah H. Kadhum Department of Mechanical Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah, Saudi Arabia
  • Omar A. Bamaga Center of Excellence in Desalination Technology, King Abdulaziz University, P.O. Box 80200, Jeddah 21589, Saudi Arabia
  • Zulfa A. Baz Center for Teaching and Learning Development, King Abdulaziz University, Jeddah, Saudi
  • Nidal H. Abu-Hamdeh Department of Mechanical Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah, Saudi Arabia

DOI:

https://doi.org/10.29121/ijetmr.v12.i2.2025.1530

Keywords:

Sweeping Gas Membrane, Flat Plate Collector, Photovoltaic Panel

Abstract

This study examines the energy and performance of a solar sweeping gas membrane distillation (SGMD) unit with different water vapor condensers. The study assesses the efficiency of the SGMD system under different water vapor condensation configurations using only solar energy. The study examines how water vapor condensation configurations affect system productivity, specifically condensed water yield and energy efficiency. The study was conducted in the Mecca area on three occasions: winter, summer, and day. A new model was created to simulate desalination processes, and the research introduced an SGMD unit modeling component to the standard library. The measured and predicted permeate flow values were similar, with peak solar radiation and maximum ambient temperatures. The study yielded good results, with 5,452 W on the latest summer test day and 4,998 W on the latest winter test day. The seawater outflow from the SGMD system was 53-21 degrees Celsius.

Downloads

Download data is not yet available.

References

Acevedo, L., et al. (2016). Dynamic Simulation of a Trigeneration Scheme for Domestic Purposes Based on Hybrid Techniques. Energies, 9(12), 1013. https://doi.org/10.3390/EN9121013

Al-Hayeka, I., & Badran, O. O. (2004). The Effect of Using Different Designs of Solar Stills on Water Distillation. Desalination, 169(2), 121-127. https://doi.org/10.1016/J.DESAL.2004.08.013

Ali, A., Aimar, P., & Drioli, E. (2015). Effect of Module Design and Flow Patterns on Performance of Membrane Distillation Process. Chemical Engineering Journal, 277, 368-377. https://doi.org/10.1016/j.cej.2015.04.108

Anderson, D. A., Tannehill, J. C., Pletcher, R. H., Ramakanth, M., & Shankar, V. (2020). Computational Fluid Mechanics and Heat Transfer. https://doi.org/10.1201/9781351124027

Basini, L., D'Angelo, G., Gobbi, M., Sarti, G. C., & Gostoli, C. (1987). A Desalination Process Through Sweeping Gas Membrane Distillation. Desalination, 64, 245-257. Accessed: Sep. 09, 2024. [Online]. Available:

Bergman, T. L., & Incropera, F. P. (2011).Fundamentals of Heat and Mass Transfer* (1048). Accessed: Oct. 26, 2024. [Online]. Available:

Bernier, M., & Beausoleil-Morrison, I. (2005). New Evolutions in TRNSYS: A Selection of Version 16 features.

Boukhriss, M., Zarzoum, K., Maatoug, M. A., & Timoumi, M. (2021). Innovation of Solar Desalination System Coupled with Solar Collector: Experimental Study. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 80(1), 94-111. Accessed: Sep. 10, 2024. [Online]. Available:

Boukhriss, M., Zhani, K., & Ben Bacha, H. (2017). Optimization of Membrane Distillation (MD) Technology for Specific Application Desalination. International Journal of Advanced Manufacturing Technology, 88(1-4), 55-66. https://doi.org/10.1007/S00170-016-8756-4/METRICS

Eltahlawi, M. E. (n.d.). Experimental Investigations on Topsoil Humidification by a Sweeping Gas Membrane Distillation System (Unpublished thesis). King Abdulaziz University, Jeddah.

Essalhi, M., & Khayet, M. (2015). Membrane Distillation (MD). In Progress in Filtration and Separation (pp. 61-99). https://doi.org/10.1016/B978-0-12-384746-1.00003-3

Ethaib, S., Zubaidi, S. L., & Al-Ansari, N. (2022). Evaluation Water Scarcity Based on GIS Estimation and Climate-Change Effects: A Case Study of Thi-Qar Governorate, Iraq. Cogent Engineering, 9(1). https://doi.org/10.1080/23311916.2022.2075301

G. F. W. S. W. H., & Norman N. L. T. M. (n.d.). Advanced Membrane Technology and Applications.

García-Payo, M. C., Rivier, C. A., Marison, I. W., & Von Stockar, U. (2002). Separation of Binary Mixtures by Thermostatic Sweeping Gas Membrane Distillation: II. Experimental Results with Aqueous Formic Acid Solutions. Journal of Membrane Science, 198(2), 197-210. https://doi.org/10.1016/S0376-7388(01)00649-4

Ghenai, C., Merabet, A., Salameh, T., & Pigem, E. C. (2018). Grid-tied and stand-alone hybrid solar power system for desalination plant. Desalination, 435, 172-180. https://doi.org/10.1016/J.DESAL.2017.10.044

Gryta, M., & Tomaszewska, M. (1998). Heat Transport in the Membrane Distillation Process. Journal of Membrane Science, 144 (1-2), 211-222. https://doi.org/10.1016/S0376-7388(98)00050-7

Gryta, M., Tomaszewska, M., & Morawski, A. W. (1997). Membrane Distillation with Laminar Flow. Separation and Purification Technology, 11(2), 93-101. https://doi.org/10.1016/S1383-5866(97)00002-6

Hobbi, A., & Siddiqui, K. (2009). Optimal Design of a Forced Circulation Solar Water Heating System for a Residential Unit in Cold Climate Using TRNSYS. Solar Energy, 83(5), 700-714. https://doi.org/10.1016/J.SOLENER.2008.10.018

Huang, S. M., et al. (2019). Heat and Mass Transfer in a Hollow Fiber Membrane Contactor for Sweeping Gas Membrane Distillation. Separation and Purification Technology, 220, 334-344. https://doi.org/10.1016/J.SEPPUR.2019.03.046

Irki, S., Kasbadji-Merzouk, N., Hanini, S., & Ghernaout, D. (2020). Modelling of the Coupling of Desalination Plants with the Thermal Solar Energy System. Water Science and Technology: Water Supply, 20(5), 1807-1822. https://doi.org/10.2166/ws.2020.092

Kays, W. M., Crawford, M. E., & Weigand, B. (n.d.). Solutions Manual.

Khayet, M. (2011). Membranes and Theoretical Modeling of Membrane Distillation: A Review. Advances in Colloid and Interface Science, 164(1-2), 56-88. https://doi.org/10.1016/J.CIS.2010.09.005

Kim, W. J., Campanella, O., & Heldman, D. R. (2021). Predicting the Performance of Direct Contact Membrane Distillation (DCMD): Mathematical Determination of Appropriate Tortuosity Based on Porosity. Journal of Food Engineering, 294, 110400. https://doi.org/10.1016/J.JFOODENG.2020.110400

Lawson, K. W., & Lloyd, D. R. (1997). Review Membrane distillation.

Leelamanie, D. (2011). Changes in Soil Water Content with Ambient Relative Humidity in Relation to the Organic Matter and Clay. Tropical Agricultural Research and Extension, 13(1), 6. https://doi.org/10.4038/TARE.V13I1.3130

Li, G. P., & Zhang, L. Z. (2017). Conjugate Heat and Mass Transfer in a Cross-Flow Hollow Fiber Membrane Bundle used for Seawater Desalination Considering Air Side Turbulence. Journal of Membrane Science, 533, 321-335. https://doi.org/10.1016/J.MEMSCI.2017.03.051

Li, G., & Lu, L. (2020). Modeling and Performance Analysis of a Fully Solar-Powered Stand-Alone Sweeping Gas Membrane Distillation Desalination System for Island and Coastal Households. Energy Conversion and Management, 205. https://doi.org/10.1016/j.enconman.2019.112375

MICRODYN Microfiltration Modules. (n.d.). Accessed: Oct. 26, 2024.

Martínez-Díez, L., & Vázquez-González, M. I. (1999). Temperature and Concentration Polarization in Membrane Distillation of Aqueous Salt Solutions. Journal of Membrane Science, 156*(2), 265-273. https://doi.org/10.1016/S0376-7388(98)00349-4

Modeling of Solar Storage Tanks. (n.d.). Accessed: Oct. 24, 2024. [Online]. Available:

Nasirabadi, P. S., Jabbari, M., & Hattel, J. H. (2016). Estimation of Water Diffusion Coefficient into Polycarbonate at Different Temperatures Using Numerical Simulation. In AIP Conference Proceedings*. https://doi.org/10.1063/1.4951801

Newton, B. J. (1995). Modeling of Solar Storage Tanks. Accessed: Oct. 24, 2024. [Online]. Available:

Olabi, A. G., & Abdelkareem, M. A. (2022). Renewable Energy and Climate Change. Renewable and Sustainable Energy Reviews, 158, 112111. https://doi.org/10.1016/J.RSER.2022.112111

Qtaishat, M., Matsuura, T., Kruczek, B., & Khayet, M. (2008). Heat and Mass Transfer Analysis in Direct Contact Membrane Distillation. Desalination, 219*(1-3), 272-292. https://doi.org/10.1016/J.DESAL.2007.05.019

Ren, J., & Wang, R. (2011). Preparation of Polymeric Membranes. In Membrane and Desalination Technologies (pp. 47-100). https://doi.org/10.1007/978-1-59745-278-6_2

Saturation thermodynamic properties of water at. (n.d.).

Sieder, E. N., & Tate, G. E. (1936). Heat Transfer and Pressure Drop of Liquids in Tubes. Industrial & Engineering Chemistry, 28(12), 1429-1435. https://doi.org/10.1021/IE50324A027/ASSET/IE50324A027.FP.PNG_V03

Tomaszewska, M. (2014). Sweep Gas Membrane Distillation (SGMD). In Encyclopedia of Membranes (1-3). https://doi.org/10.1007/978-3-642-40872-4_769-2

Tomaszewska, M. (2014). Sweep Gas Membrane Distillation (SGMD). In Encyclopedia of Membranes (1-3). https://doi.org/10.1007/978-3-642-40872-4_769-2

Vargas-Bautista, J. P., García-Cuéllar, A. J., Pérez-García, S. L., & Rivera-Solorio, C. I. (2017). Transient Simulation of a Solar Heating System for a Small-Scale Ethanol-Water Distillation Plant: Thermal, Environmental and Economic Performance. Energy Conversion and Management, 134, 347-360. https://doi.org/10.1016/J.ENCONMAN.2016.12.041

Walton, J. C., & Solís, S. S. (n.d.). Solar and Waste Heat Desalination by Membrane Distillation. [Online]. Available: https://www.researchgate.net/publication/267196192

Xu, G., Yang, M., Li, S., Jiang, M., & Rehman, H. (2024). Evaluating the Effect of Renewable Energy Investment on Renewable Energy Development in China with Panel Threshold Model. Energy Policy, 187, 114029. https://doi.org/10.1016/J.ENPOL.2024.114029

Yun, Y., Ma, R., Zhang, W., Fane, A. G., & Li, J. (2006). Direct Contact Membrane Distillation Mechanism for High Concentration NaCl Solutions. Desalination, 188(1-3), 251-262. https://doi.org/10.1016/J.DESAL.2005.04.123

Zhao, S., Feron, P. H. M., Xie, Z., Zhang, J., & Hoang, M. (n.d.). Condensation Studies in Membrane Evaporation and Sweeping Gas Membrane Distillation.

Zubaidi, S. L., Hashim, K., Ethaib, S., Al-Bdairi, N. S. S., Al-Bugharbee, H., & Gharghan, S. K. (2022). A Novel Methodology to Predict Monthly Municipal Water Demand Based on Weather Variables Scenario. Journal of King Saud University - Engineering Sciences, 34(3), 163-169. https://doi.org/10.1016/J.JKSUES.2020.09.011

Downloads

Published

2025-02-05

How to Cite

Kadhim, A. H., Bamaga, O. A., Baz, Z. A., & Abu-Hamdeh, N. H. (2025). ENERGY ANALYSIS OF A SOLAR-OPERATED SWEEPING GAS MEMBRANE DISTILLATION SYSTEM INTEGRATED WITH DIFFERENT WATER VAPOR CONDENSATION CONFIGURATIONS. International Journal of Engineering Technologies and Management Research, 12(2), 1–23. https://doi.org/10.29121/ijetmr.v12.i2.2025.1530