MOTION DETECTION IN A VIDEO SEQUENCE USING BACKGROUND SUBTRACTION BY 3D STATISTICAL MODELING IN THE VISIBLE SPECTRUM: HOME SURVEILLANCE CAMERA

Authors

  • Ali Ouchar Cherif Institut National Supérieur des Sciences et Technique d’Abéché, Tchad
  • Mankiti Fati Aristide Ecole Nationale Supérieure Polytechnique de l’Université Marien NGOUABI, Congo Brazzaville
  • Mbaiossoum Bery Leouro Université de Ndjamena, Tchad
  • Abakar Mahamat Ahmat Université de Ndjamena, Tchad

DOI:

https://doi.org/10.29121/ijetmr.v10.i7.2023.1351

Keywords:

Motion Detection, Computer Vision, Artificial Intelligence, Video Sequence, Image Processing, Background Subtraction

Abstract

Motion recognition is one of the key applications of motion detection, which involves image processing. For this reason, the proposed work is merely an extension of the final year project. It will involve a detailed study of a method for automatic, real-time recognition of motion and identity in a video stream.
Recognizing the suspicious movement of an object or person in an image is a major challenge in the field of camera-based surveillance. This recognition of suspicious object movement involves several phases: detection, tracking, creation of a database or vocabulary against which movements can be compared in order to be recognized and qualified as suspicious or not. In this work, we focus on the phase of detecting a moving object or person in a video sequence. We study a number of existing methods for detecting the movement of objects or people in a video sequence, in order to select the best among them for possible implementation.

Downloads

Download data is not yet available.

Author Biographies

Ali Ouchar Cherif, Institut National Supérieur des Sciences et Technique d’Abéché, Tchad

 

 

Mankiti Fati Aristide, Ecole Nationale Supérieure Polytechnique de l’Université Marien NGOUABI, Congo Brazzaville

 

 

Mbaiossoum Bery Leouro, Université de Ndjamena, Tchad

 

 

Abakar Mahamat Ahmat, Université de Ndjamena, Tchad

 

 

References

Benabbas Siavosh (2012). Département d’Informatique, & Université de Toronto, Efficace. Sum-Based Hiérarchique Lissage Sous ell_1-Norm.

Benezeth, Y., Jodoin, P. M., Emile, B., Laurent, H., & Rosenberger, C. (2008). Review and Evaluation of Commonly Implemented Background Subtraction Algorithms. In Proceedings of the International Conference on Pattern Recognition, 1–4. https://doi.org/10.1109/ICPR.2008.4760998

Cucchiara, R., Grana, C., & Piccardi, M. (2001). Andrea Pratti et Stefano Sirotti: Improving Shadow Suppression in Moving Object Detection with HSV Color Information. Dans Intelligent Transportation Systems. IEEE Publications, 334–339.

Dalal, N., & Triggs, B. (2005). Histograms of Oriented Gradients for Human Detection. In IEEE Proceedings of the Conference on Computer Vision and Pattern Recognition, 886–893. https://doi.org/10.1109/CVPR.2005.177

Gobeau, J. F. (2007). Détecteurs de Mouvement à Infrarouge Passif (Dé- Tecteurs IRP). Colloque Capteurs.

Gomez, G., & Morales, E. (2002). Automatic Feature Reconstruction and a Simple Rule induction Algorithm for Skin Detection. Dans ICML Workshop On Machine Learning in Computer Vision, 31–38.

H. Nicolas et C. Labit (1993). Motion and Illumination Variation Estimation Using a Hierarchy of Models: Application to Image Sequence Coding, Publication Interne., 742, IRISA.

Kim, K., Chalidabhongse, T. H., Harwood, D., & Davis, L. (2005). Real-time Foreground-Background Segmentation Using Codebook Model. Real-Time Ima- ging, 11, 172185. https://doi.org/10.1016/j.rti.2004.12.004

Kovac, J., & Solina, P. F. (2003). Human Skin Color Clustering for Face Detection. EUROCON 2003 Computer as a tool, 2, 144–148. https://doi.org/10.1109/EURCON.2003.1248169

Medjahed, F. (2012). Détection et Suivi d’objets en Mouvement Dans une Séquence d’images, Mémoire Magister, Université Mohamed Boudiaf faculté de génie Electrique.

Mikiæ, I., Cosman, P. C., & Greg, T. (2000). Kogut et Mohan M. Trivedi: Moving Shadow and Object Detection in Traffic Scenes. Dans International Conference on Pattern Recognition (ICPR), 321–324.

Sigal, L., & Athitsos, S. V. (2000). Estimation and Prediction of Evolving Color Distributions for Skin Segmentation Under Varying Illumination. Dans IEEE Conference on Computer Vision and Pattern Recognition, 2, 152–159.

Viola, P., Jones, M. J., & Snow, D. (2005). Detecting pedestrians using patterns of motion and appearance. In International Journal of Computer Vision, 63(2), 153–161. https://doi.org/10.1007/s11263-005-6644-8

Wu, B., & Nevatia, R. (2006). Tracking of Multiple, Partially Occluded Humans Based on Static Body Part Detection. In IEEE Proceedings of the Conference on Computer Vision and Pattern Recognition, 951–958.

Zhao, Q., Kang, J., Tao, H., & Hua, W. (2006). Part Based Human Tracking in A Multiple Cues Fusion Framework. In Proceedings of the International Conference on Pattern Recognition, 450–455.

Downloads

Published

2023-08-01

How to Cite

Cherif, A. O., Aristide, M. F., Leouro, M. B., & Ahmat, A. M. (2023). MOTION DETECTION IN A VIDEO SEQUENCE USING BACKGROUND SUBTRACTION BY 3D STATISTICAL MODELING IN THE VISIBLE SPECTRUM: HOME SURVEILLANCE CAMERA. International Journal of Engineering Technologies and Management Research, 10(7), 35–44. https://doi.org/10.29121/ijetmr.v10.i7.2023.1351