A REVIEW ON CARBON/GRAPHENE QUANTUM DOTS AND THEIR APPLICTAIONS IN ANODE OF LITHIUM-ION BATTERIES
DOI:
https://doi.org/10.29121/ijetmr.v9.i11.2022.1247Keywords:
Carbon Based Nano-Composites, Carbon Quantum Dots, Carbon Nanotubes, Electrochemical Performance, Graphene Quantum Dots, Lithium-Ion BatteryAbstract
This article is all about a revolutionary carbon nanomaterial Carbon/Graphene quantum dot “(C/GQDs)". It is known as the world's strongest, lightest, thinnest, and hardest material, with essentially endless sources due to its composition of carbon, which is the fourth most abundant element in the universe. CQDs are carbon nanoparticles that are smaller than 10 nm. Strong and controllable fluorescence emission, structural and chemical stability, wide surface area, electrical conductivity, and low toxicity are just a few of the characteristics of these 0- dimensional QDs. This can be used in a variety of ways. In this paper, we'll discuss about their application in Lithium-ion batteries. These batteries are particularly promising energy storage devices because of their high capacity, fast charge-discharge rates, light weight, and great stability. These rechargeable batteries have proven to be a rising star, with plenty of opportunity to grow in order to meet future energy demands. This study will provide an overview of carbon quantum dots as an anode for Li-ion batteries, as well as the advantages of carbonic anodes. It also explains why carbon quantum dots and their composites are the best anode materials for lithium-ion batteries. We intend to offer a brief overview of several carbon anodes, as well as a thorough examination of various anodic materials that are now accessible.
Downloads
References
A. D. W. Todd, P. P. Ferguson, M. D. Fleischauer and J. R. Dahn (2010). "Tin-Based Materials as Negative Electrodes For Li-Ion Batteries: Combinatorial Approaches and Mechanical Methods", International Journal of Energy Research, 34, 535-555. https://doi.org/10.1002/er.1669. DOI: https://doi.org/10.1002/er.1669
A. P. Vijaya Kumar Saroja, M. S. Garapati, R. Shyiamala Devi, M. Kamaraj and S. Ramaprabhu (2020)." Facile Synthesis Of Heteroatom Doped and Undoped Graphene Quantum Dots as Active Materials for Reversible Lithium And Sodium Ions Storage" Appl. Surf. Sci., 504, 144430. https://doi.org/10.1016/j.apsusc.2019.144430. DOI: https://doi.org/10.1016/j.apsusc.2019.144430
A. Prasath, M. Athika, E. Duraisamy, A.S. Sharma, V.S. Devi, and P. Elumalai (2019). "Carbon Quantum Dot-Anchored Bismuth Oxide Composites as Potential Electrode for Lithium-Ion Battery and Supercapacitor Applications", Journal of American Chemical Society, ACS Omega, 4, 4943−4954. https://doi.org/10.1021/acsomega.8b03490. DOI: https://doi.org/10.1021/acsomega.8b03490
A. Yoshino, K. Sanechika and T. Nakajima (1985). "Secondary Battery", Japanese Patent, Assigned to Asahi Kasei, May.
A.Yoshino (2012). "The Birth of the Lithium-ion Battery", Article of Angewandte Chemie International Edition, 51. https://doi.org/10.1002/anie.201105006. DOI: https://doi.org/10.1002/anie.201105006
Akash S. Rasal, Sudesh Yadav, Anchal Yadav, Anil A. Kashale, Subrahmanya Thagare Manjunatha, Ali Altaee, and Jia-Yaw Chan(2021). "Carbon Quantum Dots for Energy Applications: A Review", ACS Appl. Nano Mater, 4, 6515−6541. https://doi.org/10.1021/acsanm.1c01372 . DOI: https://doi.org/10.1021/acsanm.1c01372
Ali Reza Kamali and Derek J. Fray (2010)."Review on Carbon and Silicon Based Materials as Anode Materials for Lithium-Ion Batteries", Journal of New Materials for Electrochemical Systems, 13, 147-160.
Andre Geim, Konstantin Novoselov (2010). "The Nobel Prize in Physics", Nobel Prize.org., Nobel Media, Prize Announcement, AB2021.
B. Jiang, Y. Liang, X. Yu, G. Yuan, M. Zheng, Y. Xiao, H. Dong, Y. Liu, H. Hu (2020). "Facile Synthesis of Feco3/Nitrogen-Doped Carbon Dot Composites for Lithium-Ion Battery Anodes", Journal of Alloys and Compounds. https://doi.org/10.1016/j.jallcom.2020.155508. DOI: https://doi.org/10.1016/j.jallcom.2020.155508
B. Zhu, Y. Jin, Y. Tan, L. Zong, Y. Hu, L. Chen, Y. Chen, Q. Zhang and J. Zhu (2015)." Towards High Energy Density Lithium Battery Anodes: Silicon and Lithium", Journal of Nano Lett. 15, 5750-5754. https://doi.org/10.1021/acs.nanolett.5b01698. DOI: https://doi.org/10.1021/acs.nanolett.5b01698
Baolin Xing, Huihui Zeng, Guangxu Huang, Chuanxiang Zhang, Ruifu Yuan, Yijun Cao, Zhengfei Chen, Jianglong Yu (2019). "Porous Graphene Prepared from Anthracite as Hig- Performance Anode Materials for Lithium-Ion Battery Applications", Journal of Alloys and Compounds, 779, 202-21. https://doi.org/10.1016/j.jallcom.2018.11.288 DOI: https://doi.org/10.1016/j.jallcom.2018.11.288
Bin Huang, Xinhai Li, Yi Pei, Shuang Li, Xi Cao, Robert C. Massé, and Guozhong Cao (2016). "Novel Carbon-Encapsulated Porous SnO 2 Anode for Lithium-Ion Batteries with Much Improved Cyclic Stability", Journal of Materials View, Small, 12 (14), 1945-1955. https://doi.org/10.1002/smll.201503419 . DOI: https://doi.org/10.1002/smll.201503419
Bin Wang, Chuangang Hu and Liming Dai (2016). "Functionalized Carbon Nanotubes And Graphene-Based Materials For Energy Storage", Journal of Chem. Commun., The Royal Society of Chemistry, 52, 14350-14360. https://doi.org/10.1039/C6CC05581H. DOI: https://doi.org/10.1039/C6CC05581H
C. J. Wen and R. A. Huggins (1981). "Electrochemical Investigation of the Lithium‐Gallium System", Journal of Electro chem. Soc., 128, 1636-1641. https://doi.org/10.1149/1.2127701. DOI: https://doi.org/10.1149/1.2127701
Cheng Lin, Aihua Tang, Ningning Wu, and Jilei Xing (2016). "Electrochemical and Mechanical Failure of Graphite-Based Anode Materials in Li-Ion Batteries for Electric Vehicles", Journal of Chemistry Hindawi Publishing Corporation, Volume, Article ID 2940437, 7 pages. http://dx.doi.org/10.1155/2016/2940437. DOI: https://doi.org/10.1155/2016/2940437
D-Y. Shin, K-W. Sung, H-J. Ahn (2020). "Fluorine-Doped Carbon Quantum Dot Interfacial Layer on Stockade-Like Etched Copper Foil for Boosting Li-Ion Storage", Journal of Chemical Engineering. https://doi.org/10.1016/j.cej.2020.127563. DOI: https://doi.org/10.1016/j.cej.2020.127563
D. Tang, J. Liu, X. Wu, R. Liu, X. Han, Y. Han, H. Huang, Y. Liu, Z. Kang (2014). "Carbon Quantum Dot/Nife Layered Double-Hydroxide Composite as a Highly Efficient Electro Catalyst for Water Oxidation". Journal of ACS Appl. Mater. Interfaces, 6, 7918. https://doi.org/10.1021/am501256x. DOI: https://doi.org/10.1021/am501256x
D. Wang, C. Zhou, B. Cao, Y. Xu, D. Zhang, A. Li, J. Zhou, Z. Ma, X. Chen, H. Song (2019). "One-Step Synthesis of Spherical Si/C Composites with Onion-Like Buffer Structure As High-Performance Anodes for Lithium-Ion Batteries", Journal of Energy Storage Materials. https://doi.org/10.1016/j.ensm.2019.07.045. DOI: https://doi.org/10.1016/j.ensm.2019.07.045
Deng, D., M. G. Kim, J. Y. Lee, and J. Cho. (2009). "Green Energy Storage Materials: Nanostructured Tio2 and Sn-Based Anodes for Lithium-Ion Batteries", Journal of Energ. Environ. Sci. 2, 818-837. https://doi.org/10.1039/b823474d . DOI: https://doi.org/10.1039/b823474d
En Qi, Joseph G. Shapter, Qian Wu, Ting Yin, Guo Gao and Daxiang Cui (2017). "Nanostructured anode Materials for Lithium-Ion Batteries: Principle, Recent Progress and Future Perspectives", Journal of Materials Chemistry-A. https://doi.org/10.1039/C7TA05283A .
F. Luo, B. Liu, J. Zheng, G. Chu, K. Zhong, H. Li, X. Huang and L. Chen (2015). " Ni-Sn Intermetallics as Efficient Buffering Matrix of Si Anodes In Li-Ion Batteries", Journal of Electro chem. Soc., 162, A2509-A2528. https://doi.org/10.1149/2.0131514jes . DOI: https://doi.org/10.1149/2.0131514jes
Fu J, Liu H, Liao L, Fan P, Wang Z,Wu Y, Zhang Z, Hai Y, Lv G, Mei L,Hao H, Xing J and Dong J (2018). "Ultrathin Si/CNTs Paper-Like Composite for Flexible Li-Ion Battery Anode with High Volumetric Capacity", Jorunal of Frontier in Chemistry, 6, 624. https://doi.org/10.3389/fchem.2018.00624. DOI: https://doi.org/10.3389/fchem.2018.00624
H. Li, X. He, Y. Liu, H. Huang, S. Lian, S.T. Lee, Z. Kang (2011). "One-Step Ultrasonic Synthesis of Water-Soluble Carbon Nanoparticles with Excellent Photoluminescent Properties". Journal of Carbon, 49, 605. https://doi.org/10.1016/j.carbon.2010.10.004. DOI: https://doi.org/10.1016/j.carbon.2010.10.004
H. Lu, R. Chen, Y. Hu, X. Wang, Y. Wang, L. Ma, G. Zhu, T. Chen, Z. Tie, Z. Jin and J. Liu (2017). "Bottom-Up Synthesis of Nitrogen-Doped Porous Carbon Scaffolds For Lithium And Sodium Storage" Journal of Nanoscale. https://doi.org/10.1039/C6NR08296C . DOI: https://doi.org/10.1039/C6NR08296C
H.M.El Sharkawy, A.S. Dhemees, A.R. Tammen, S.M.El. Sabagn, R.M. Aboushabha, N.L.Allam (2020). " N-Doped Carbon Quantum Dots Boost the Electrochemical Supercapacitive Performance and Cyclic Stability Of Mos2", Journal of Energy Storage, 27, 101078. https://doi.org/10.1016/j.est.2019.101078. DOI: https://doi.org/10.1016/j.est.2019.101078
Hao Zhang, Yang Yang, Dongsheng Ren, Li Wang, Xiangming He (2021). "Graphite as Anode Materials: Fundamental Mechanism, Recent Progress and Advances", Energy Storage Materials, 36, 147-170. https://doi.org/10.1016/j.ensm.2020.12.027. DOI: https://doi.org/10.1016/j.ensm.2020.12.027
I.-s. Kim, G. E. Blomgren and P. N. Kumta (2004). "Si-SiC Nanocomposite Anodes Synthesized Using High-Energy Mechanical Milling", Journal of Power Sources, 130, 275-280. https://doi.org/10.1016/j.jpowsour.2003.12.014 . DOI: https://doi.org/10.1016/j.jpowsour.2003.12.014
Issatayev, N.; Kalimuldina,G.; Nurpeissova, A.; Bakenov, Z (2022). "Biomass-Derived Porous Carbon from Agar as an Anode Material for Lithium-Ion Batteries". Nanomaterials, 12, 22. https://doi.org/10.3390/nano12010022 . DOI: https://doi.org/10.3390/nano12010022
J. S. Bridel, T. Aza¨ıs, M. Morcrette, J. M. Tarascon and D. Larcher (2010). "Vinyltriethoxysilane Crosslinked Poly(Acrylic Acid Sodium) as a Polymeric Binder for High Performance Silicon Anodes in Lithium Ion Batteries", Journal of Chem. Mater. 22, 1229-1241. https://doi.org/10.1039/c8ra04967j . DOI: https://doi.org/10.1039/C8RA04967J
J. Wang, I. D. Raistrick and R. A. Huggins(1986). "Behavior of Some Binary Lithium Alloys as Negative Electrodes in Organic Solvent-Based Electrolytes", Journal of Electro chem. Soc. 133, 457-460. https://doi.org/10.1149/1.2108601. DOI: https://doi.org/10.1149/1.2108601
J. Wang, R. Sheng Li, H. Zhi Zhang, N. Wang, Z. Zhang, C.Z. Huang (2017). "Highly Fluorescent Carbon Dots as Selective and Visual Probes for Sensing Copper Ions in Living Cells Via an Electron Transfer Process", Journal of Biosens. Bioelectron, 97, 157. https://doi.org/10.1016/j.bios.2017.05.035 . DOI: https://doi.org/10.1016/j.bios.2017.05.035
J. Zhu, D. Lei, G. Zhang, Q. Li, B. Lu, T. Wang (2013). "Carbon and Graphene Double Protection Strategy to Improve The Snox Electrode Performance Anodes for Lithium-Ion Batteries", Journal of Nanoscale, 5, 5499-5505. https://doi.org/10.1039/c3nr00467h. DOI: https://doi.org/10.1039/c3nr00467h
J.Tarascon, P. Poizot, S. Laruelle, S. Grugeon and L. Dupont (2000). "Nano-sized Transition Metal Oxides as Negative Electrode Materials for Lithium Ion Batteries", Journal of Nature, 407, 496-499. https://doi.org/10.1038/35035045 . DOI: https://doi.org/10.1038/35035045
Jiantie Xu, Yi Lin, John W. Connell, and Liming Dai (2015). "Nitrogen-Doped Holey Graphene as an Anode for Lithium-Ion Batteries with High Volumetric Energy Density and Long Cycle Life", Journal of small, 11(46), 6179-6185. https://doi.org/10.1002/smll.201501848. DOI: https://doi.org/10.1002/smll.201501848
Jiaqi Guo, Fangliang Gao, Dongyang Li, Xingjun Luo, Yiming Sun, Xingfu Wang, Zhilin Ran, Qibao Wu, and Shuti Li (2020). "A Novel Strategy of Constructing Hollow Ga2O3@N-Cqds As Self-Healing Anode Material for Lithium-Ion Batteries", Journal of ACS Sustainable Chemistry & Engineering, 8, 36, 13692–13700. https://doi.org/10.1021/acssuschemeng.0c03756 . DOI: https://doi.org/10.1021/acssuschemeng.0c03756
Jinhui Xu, Qingyang Yin, Xinru Li, Xinyi Tan, Qian Liu, Xing Lu, Bocheng Cao, Xintong Yuan, Yuzhang Li, Li Shen, and Yunfeng Lu (2022). "Spheres of Graphene and Carbon Nanotubes Embedding Silicon as Mechanically Resilient Anodes for Lithium-Ion Batteries", Nano Letters, 22 (7), 3054-3061. https://doi.org/10.1021/acs.nanolett.2c00341. DOI: https://doi.org/10.1021/acs.nanolett.2c00341
Jongmin Kim, Wooree Jang, Ji Hoon Kim, Cheol-Min Yang (2021). "Synthesis of Graphene Quantum Dots-Coated Hierarchical Cuo Microspheres Composite for Use as Binder-Free Anode for Lithium-Ion Batteries", J. of Elsevier Composites Part B 222, 109083. https://doi.org/10.1016/j.compositesb.2021.109083. DOI: https://doi.org/10.1016/j.compositesb.2021.109083
K. Kierzek, J. Machnikowski and F. B'eguin (2015). "High-capacity Group-IV Elements (Si, Ge, Sn) Based Anodes for Lithium-Ion Batteries" Journal of Appl. Electrochem, 45, 1-10. https://doi.org/10.1016/j.jmat.2015.06.002 . DOI: https://doi.org/10.1016/j.jmat.2015.06.002
KH Kim, HJ Ahn (2022). "Surface Functional Group‐Tailored B and N Co Doped Carbon Quantum Dot Anode for Lithium‐Ion Batteries", International Journal of Energy Research - Wiley Online Library. https://doi.org/10.1002/er.7738 . DOI: https://doi.org/10.1002/er.7738
L. Li, C. Lu, S. Li, S. Liu, L. Wang, W. Cai, W. Xu, X. Yang, Y. Liu, R. Zhang (2017). "A High Yield and Versatile Method for the Synthesis of Carbon Dots for Bioimaging Applications", Journal of Mater. 5, 1935. https://doi.org/10.1039/C6TB03003C . DOI: https://doi.org/10.1039/C6TB03003C
L. Xu, Y. Tian, T. Liu, H. Li, J. Qiu, S. Li, H. Li, S. Yuan, S. Zhang (2018). "α-Fe2O3 Nanoplates With Superior Electrochemical Performance for Lithium-Ion Batteries", Journal of Green Energy & Environment. https://doi.org/10.1016/j.gee.2018.01.005. DOI: https://doi.org/10.1016/j.gee.2018.01.005
Li Z, Cui Y, Chen J, Deng L, Wu J (2016). "Fabrication of (Co,Mn)3O4/rGO Composite for Lithium Ion Battery Anode by a One-Step Hydrothermal Process with H2O2 as Additive", Journal of PLoS ONE, 11(10), e0164657. https://doi.org/10.1371/journal.pone.0164657. DOI: https://doi.org/10.1371/journal.pone.0164657
M. Javed, A.N.S. Saqib, Ata-ur-Rehman, B. Ali, M. Faizan, D.A. Anang, Z. Iqbal, S.M. Abbas (2018). "Carbon Quantum Dots From Glucose Oxidation as a Highly Competent Anode Material for Lithium and Sodium-Ion Batteries", Journal of Electro chimica Acta. https://doi.org/10.1016/j.electacta.2018.11.167. DOI: https://doi.org/10.1016/j.electacta.2018.11.167
M. Jing, J. Wang, H. Hou, Y. Yang, Y. Zhang, C. Pan, J. Chen, Y. Zhu and X. Ji (2015). "Carbon Quantum Dots Coated Mn3O4 with Enhanced Performances for Lithium-ion Batteries", Journal of Materials Chemistry- A, 3, 16824-16830. https://doi.org/10.1039/C5TA03610K. DOI: https://doi.org/10.1039/C5TA03610K
N. Gao, L.Huang, T.Li, J.Song, H.Hu, Y.Liu, S.Ramakrishna (2019). "Applications of Carbon Dots in Dye-Sensitized Solar cell: a review", Journal of Applied Polymaer Science, 48443. https://doi.org/10.1002/app.48443. DOI: https://doi.org/10.1002/app.48443
Naoki Nitta, Feixiang Wu, Jung Tae Lee and Gleb Yushin (2015). "Li-ion battery Materials: Present and Future", Journal of Materials Today, 18(5) 38, 275 - 283 275. https://doi.org/10.1016/j.mattod.2014.10.040. DOI: https://doi.org/10.1016/j.mattod.2014.10.040
Peng Guo, Huaihe Song, Xiaohong Chen (2009). "Electrochemical performance of Graphene Nanosheets as Anode Material for Lithium-Ion Batteries", Journal of Electrochemistry Communications, 11, 1320-1324. https://doi.org/10.1016/j.elecom.2009.04.036. DOI: https://doi.org/10.1016/j.elecom.2009.04.036
Q. Huang, H. Zhang, S. Hu, F. Li, W. Weng, J. Chen, Q. Wang, Y. He, W. Zhang, X. Bao (2014). "A Sensitive And Reliable Dopamine Biosensor was Developed Based on the Au@Carbon Dots-Chitosan Composite Film". Journal of Biosens. Bioelectron, 52, 277. https://doi.org/10.1016/j.bios.2013.09.003. DOI: https://doi.org/10.1016/j.bios.2013.09.003
Qi, Wen, Joseph G. Shapter, Qian Wu, Ting Yin, GuoGao, and Daxiang Cui. (2017). "Nanostructured Anode Materials for Lithium-Ion Batteries: Principle, Recent Progress and Future Perspectives", Journal of Materials Chemistry A, 5, no. 37, 19521-19540. https://doi.org/10.1039/C7TA05283A.
Qingke Tan, Zhen Kong, Xiaojing Chen, Lei Zhang, Xiaoqi Hu, Mengxin Mu, Haochen Sun, Xinchun Shao, Xianggang Guan, Min Gao, Binghui Xu (2019). "Synthesis of SnO2/Graphene Composite Anode Materials for Lithium-Ion Batteries", Journal of Applied Surface Science, 485, 314-322. https://doi.org/10.1016/j.apsusc.2019.04.225. DOI: https://doi.org/10.1016/j.apsusc.2019.04.225
R. Liu, W. Su, P. He, C. Shen, C. Zhang, F. Su, C.-A. Wang (2016). "Synthesis of SnO2/Sn Hybrid Hollow Spheres as High-Performance Anode Materials for Lithium-Ion Battery", Journal of Alloys and Compounds. https://doi.org/10.1016/j.jallcom.2016.07.194. DOI: https://doi.org/10.1016/j.jallcom.2016.07.194
S. Wang, H. Wang, R. Zhang, L. Zhao, X. Wu, H. Xie, J. Zhang, H. Sun (2018). "Egg Yolk-Derived Carbon: Achieving Excellent Fluorescent Carbon Dots and High-Performance Lithium-Ion Batteries", Journal of Alloys and Compounds. https://doi.org/10.1016/j.jallcom.2018.02.293. DOI: https://doi.org/10.1016/j.jallcom.2018.02.293
S. Yang, P. He, T.Yuan, Y. Li, X. Li, Y. Zhang, L. Fan, Y. Shi and T. Meng (2020). Recent Advances in White Light-Emitting Diodes of Carbon Quantum Dots", journal of Nanoscale. https://doi.org/10.1039/C9NR10958G. DOI: https://doi.org/10.1039/C9NR10958G
S. Zhuo, M. Shao, S.T. Lee (2012). "Up Conversion and Down Conversion Fluorescent Graphene Quantum Dots: Ultrasonic Preparation and Photocatalysis". Journal of ACS Nano, 6, 1059. https://doi.org/10.1021/nn2040395. DOI: https://doi.org/10.1021/nn2040395
Tian L L, Zhuang Q C, Li J, et al (2011). "Mechanism of Intercalation and Deintercalation of Lithium Ions in Graphene Nanosheets", Journal of Chinese Science Bulletin, 56(30), 3204-3212. https://doi.org/10.1007/s11434-011-4609-6 . DOI: https://doi.org/10.1007/s11434-011-4609-6
Tian-Bing Song, Zun-Hui Huang, Xiao-Qing Niu, Jun Liu, Ji-Shi Wei, Xiao-Bo Chen, and Huan-Ming Xiong (2020). "Applications of Carbon Dots in Next-generation Lithium-Ion Batteries", Chem Nano Mat 6, 1-17. https://doi.org/10.1002/cnma.202000355. DOI: https://doi.org/10.1002/cnma.202000355
W. Ren, Y. Wang, Z. Zhang, Q. Tan, Z. Zhong and F. Su (2016). "Nanostructured Anode Materials for Lithium-Ion Batteries: Principle, Recent Progress and Future Perspectives", Journal of Appl. Surf. Sci. 360, 192-197. https://doi.org/10.1039/C7TA05283A. DOI: https://doi.org/10.1039/C7TA05283A
W. Ren, Z. Zhang, Y. Wang, G. Kan, Q. Tan, Z. Zhong and F. Su (2015). "Preparation of Porous Carbon Microspheres Anode Materials from Fine Needle Coke Powders for Lithium-Ion Batteries", Journal of RSC Adv. 5, 11115-11123. https://doi.org/10.1039/C4RA15321A. DOI: https://doi.org/10.1039/C4RA15321A
W. Ren, Z. Zhang, Y. Wang, Q. Tan, Z. Zhong and F. Su (2015). "Preparation of Porous Silicon/Carbon Microspheres as High-Performance Anode Materials for Lithium-Ion Batteries" Journal of Mater. Chem. A. 3, 5859-5865. https://doi.org/10.1039/C4TA07093C. DOI: https://doi.org/10.1039/C4TA07093C
Wei Zhang, Sheng Fang, Ning Wang, Jianhua Zhang, Bimeng Shi, Zhang long Yu and Juanyu Yang (2020). "A Compact Silicon-Carbon Composite with an Embedded Structure for High Cycling Coulombic Efficiency Anode Materials in Lithium-Ion Batteries", Journal of Inorganic Chemistry Frontiers. https://doi.org/10.1039/D0QI00302F. DOI: https://doi.org/10.1039/D0QI00302F
Weimin Zhao, Jingjing Wen, Yanming Zhao, Zhifeng Wang, Yaru Shi, and Yan Zhao (2020)."Hierarchically Porous Carbon Derived from Biomass Reed Flowers as Highly Stable Li-Ion Battery Anode Nanomaterials". 10, 346. https://doi.org/10.3390/nano10020346. DOI: https://doi.org/10.3390/nano10020346
X. Xu, R. Ray, Y. Gu, H. J. Ploehn, L. Gearheart, K. Raker and W. A. Scrivens (2004). "Electrophoretic Analysis and Purification of Fluorescent Single-Walled Carbon Nanotube Fragments", Journal of American Chemical Society, vol 126, 12736. https://doi.org/10.1021/ja040082h. DOI: https://doi.org/10.1021/ja040082h
X. Yin, C. Zhi, W. Sun, L. Lv and Y. Wang (2019). "Multilayer NiO@Co3O4@Graphene Quantum Dots Hollow Spheres for High-Performance Lithium-Ion Batteries and Supercapacitors", Journal of Materials Chemistry A. https://doi.org/10.1039/C8TA11982A. DOI: https://doi.org/10.1039/C8TA11982A
X.T. Zheng, A. Anantha narayanan, K.Q. Luo, P. Chen (2015). "Glowing Graphene Quantum Dots And Carbon Dots: Properties, Syntheses, and Biological Applications". Journal of Small, 11, 1620. https://doi.org/10.1002/smll.201402648. DOI: https://doi.org/10.1002/smll.201402648
Y. Zhang, L. Jiang, C. Wang (2015). "Facile Synthesis of SnO2 Nanocrystals Anchored onto Graphene Nanosheets as anode materials for Lithium-ion batteries", Journal of Phys. Chem, 17, 20061-20065. https://doi.org/10.1039/C5CP03305E
Y. Zhang, L. Jiang, C. Wang (2015). "Facile Synthesis of Sno2 Nanocrystals Anchored Onto Graphene Nanosheets as Anode Materials for Lithium-Ion Batteries", Journal of Phys. Chem., 17, 20061-20065. https://doi.org/10.1039/C5CP03305E. DOI: https://doi.org/10.1039/C5CP03305E
Yangzhi Bai, Xinlong Cao, Zhanyuan Tian, Shifeng Yang, Guolin Cao (2021). "A High-Performancesilicon/Carbon Composite as Anode Material for Lithium-Ion Batteries", Journal of Nano Express, IOP Publishing. https://doi.org/10.1088/2632-959X/abdf2e. DOI: https://doi.org/10.1088/2632-959X/abdf2e
Zhanwei Xu, Yixing Zhao, Juju He, Tian Wang, Jun Yang, Xuetao Shen, Liyun Cao, and Jianfeng Huang (2019). " MoO3/Carbon Dots Composites for Li-Ion Battery Anodes", Journal of Chem Nano Mat. https://doi.org/10.1002/cnma.201900140. DOI: https://doi.org/10.1002/cnma.201900140
Zhuo Deng, Tingting Liu, Tao Chen, Jiaxiang Jiang, Wanli Yang, Jun Guo, Jianqing Zhao, Haibo Wang, and Lijun Gao (2017). "Enhanced Electrochemical Performances of Bi2O3/rGO Nanocomposite via Chemical Bonding as Anode Materials for Lithium-Ion Batteries", Journal of ACS, Applied Materials and Interfaces. https://doi.org/10.1021/acsami.7b00996. DOI: https://doi.org/10.1021/acsami.7b00996
Zihao He, Jing Huang, Kun Liu, Xuekun Tang, Ying Dai & Guozhao Fang (2022). "Construction of Graphitic Carbon Quantum Dots-Modified Yolk-Shell Co3O4 Microsphere for High-Performance Lithium Storage", Journal of Materials Science, 57, 3586-3600. https://doi.org/10.1007/s10853-021-06814-0. DOI: https://doi.org/10.1007/s10853-021-06814-0
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Iti Diwan, Purnima Swarup Khare
This work is licensed under a Creative Commons Attribution 4.0 International License.
License and Copyright Agreement
In submitting the manuscript to the journal, the authors certify that:
- They are authorized by their co-authors to enter into these arrangements.
- The work described has not been formally published before, except in the form of an abstract or as part of a published lecture, review, thesis, or overlay journal.
- That it is not under consideration for publication elsewhere.
- That its release has been approved by all the author(s) and by the responsible authorities – tacitly or explicitly – of the institutes where the work has been carried out.
- They secure the right to reproduce any material that has already been published or copyrighted elsewhere.
- They agree to the following license and copyright agreement.
Copyright
Authors who publish with International Journal of Engineering Technologies and Management Research agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY-SA 4.0) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors can enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or edit it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) before and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
For More info, please visit CopyRight Section