PENETRATIVE THERMO-GRAVITATIONAL AND SURFACE-TENSION DRIVEN CONVECTION IN A FERROFLUID LAYER THROUGH VOLUMETRIC INTERNAL HEATING WITH VARIABLE VISCOSITY

Authors

  • Mahesh Kumar R Department of Mathematics, M E S Pre-University College of Arts, Commerce and Science, Bengaluru- 560003, India
  • C. E. Nanjundappa Department of Mathematics, Dr. Ambedkar Institute of Technology, Bangalore, India

DOI:

https://doi.org/10.29121/ijetmr.v9.i4.2022.1140

Keywords:

Buoyancy-Gravitational, Surface-Tension Forces, Galerkin Technique, Ferrofluids, Volumetric Internal Heating, Mfd Viscosity

Abstract

This work pertaining to analytical and numerical studies on FTC in a FF layer with impact of coupled buoyancy-gravitational and surface-tension forces through the strength of internal heat source on the system subjected to the magnetic field dependent (MFD) viscosity effect. The lower boundary is considered to be rigid at either conducting or insulating to temperature perturbations, while upper boundary free open to the atmosphere is flat and subject to a Robin-type of thermal boundary condition. The Rayleigh-Ritz method with Chebyshev polynomials of the second kind as trial functions is employed to extract the critical stability parameters numerically. The onset of FTC is delayed with an increase in MFD (  ) parameter and Biot number ( Bi ) but opposite is the case with an increase in Rayleigh number
( M1 ), non-linearity of fluid magnetization ( M 3 ) and strength of internal heat source ( Ns ). Their effects are complementary in the sense that the critical Mac and Rmc decrease with an increase in Rt .

Downloads

Download data is not yet available.

References

Blums, E. (2002). Heat And Mass Transfer Phenomena. https://link.springer.com/chapter/10.1007/3-540-45646-5_7 DOI: https://doi.org/10.1007/3-540-45646-5_7

Blythe, P. A. And Simpkins, P. G. (1981). Convection In A Porous Layer For A Temperature Dependent Viscosity", International Journal Of Heat And Mass Transfer,24(3), 497-506. https://doi.org/10.1016/0017-9310(81)90057-0 DOI: https://doi.org/10.1016/0017-9310(81)90057-0

Charles, S. W. (2002). The Preparation Of Magnetic Fluids. https://doi.org/10.1007/3-540-45646-5_1 DOI: https://doi.org/10.1007/3-540-45646-5_1

Kassoy D. R. And Zebib, A. (1975). Variable Viscosity Effects On The Onset Of Convection In Porous Media", 18(12), 1649-1651. https://doi.org/10.1063/1.861083 DOI: https://doi.org/10.1063/1.861083

Lebon, G. And Cloot, A. (1986). A Thermodynamical Modeling Of Fluid Flows Through Porous Media", Application Kassoy Dr, Zebib A. Variable Viscosity Effects On The Onset Of Convection In Porous Media To Natural Convection, International Journal Of Heat And Mass Transfer, 29(3), 381-389. https://doi.org/10.1016/0017-9310(86)90208-5 DOI: https://doi.org/10.1016/0017-9310(86)90208-5

Nanjundappa, C. E. Ravisha, M. Lee, J. And Shivakumara, I. S. (2011). Penetrative Ferroconvection In A Porous Layer”, 243-257. https://doi.org/10.1007/s00707-010-0367-9 DOI: https://doi.org/10.1007/s00707-010-0367-9

Nanjundappa, C. E. Shivakumara, I. S, And Prakash, H. N. (2012). Penetrative Ferroconvection Via Internal Heating In A Saturated Porous Layer With Constant Heat Flux At The Lower Boundary", Journal Of Magnetism Magnetic Materials, 324(9), 1670-1678. https://doi.org/10.1016/j.jmmm.2011.11.057 DOI: https://doi.org/10.1016/j.jmmm.2011.11.057

Nanjundappa, C. E. Shivakumara, I. S. Lee, J. And Ravisha, M. (2011). Effect Of Internal Heat Generation On The Onset Of Brinkman-Bénard Convection In A Ferrofluid Saturated Porous Layer", International Journal Of Thermal Sciences, 50(2), 160-168. https://doi.org/10.1016/j.ijthermalsci.2010.10.003 DOI: https://doi.org/10.1016/j.ijthermalsci.2010.10.003

Nield, D. A. (1964). Surface Tension And Buoyancy Effects In Cellular Convection, Journal Of Fluid Mechanics, 19(3), 341-352. https://doi.org/10.1017/S0022112064000763 DOI: https://doi.org/10.1017/S0022112064000763

Nkurikiyimfura, I. Wanga, Y. And Pan, Z. (2013). Heat Transfer Enhancement By Magnetic Nanofluids-A Review", Renewable And Sustainable Energy Reviews, 548-561. https://doi.org/10.1016/j.rser.2012.12.039 DOI: https://doi.org/10.1016/j.rser.2012.12.039

Patil, P. R. And Vaidyanathan, G. (1981). Effect Of Variable Viscosity On The Setting Up Of Convection Currents In A Porous Medium", International Journal Of Engineering Sciences, 421-426. https://doi.org/10.1016/0020-7225(81)90062-8 DOI: https://doi.org/10.1016/0020-7225(81)90062-8

Patil, P. R. And Vaidyanathan, G. (1982). Effect Of Variable Viscosity On Thermohaline Convection In A Porous Medium", Journal Of Hydrology, 147-161. https://doi.org/10.1016/0022-1694(82)90109-3 DOI: https://doi.org/10.1016/0022-1694(82)90109-3

Rosensweig, R. E. (1985). Ferrohydrodynamics, https://www.cambridge.org/core/journals/journal-of-fluid-mechanics/article/abs/ferrohydrodynamics-by-r-e-rosensweig-cambridge-university-press-1985-344-pp-45/F9ED8D5FBD40AD7CFF5CB1D827ADA3CC

Rosenwieg, R.E. Kaiser, R. Miskolczy, G. (1969). Viscosity Of Magnetic Fluid In A Magnetic Field" Journal Of Colloid Interface Science, 680-686. https://doi.org/10.1016/0021-9797(69)90220-3 DOI: https://doi.org/10.1016/0021-9797(69)90220-3

Savitha, Y. L. Nanjundappa, C. E. And Shivakumara, I. S. (2021). Penetrative Brinkman Ferroconvection Via Internal Heating In High Porosity Anisotropic Porous Layer : Influence Of Boundaries", https://doi.org/10.1016/j.heliyon.2021.e06153 DOI: https://doi.org/10.1016/j.heliyon.2021.e06153

Shivakumara, I. S. Lee, J. And Nanjundappa, C. E. (2012). Onset Of Thermogravitational Convection In A Ferrofluid Layer With Temperature Dependent Viscosity", Asme Journal Of Heat Transfer, 134(1). https://doi.org/10.1115/1.4004758 DOI: https://doi.org/10.1115/1.4004758

Shliomis, M. L. (1974). Magnetic Fluids", 17(2), 153. https://doi.org/10.1070/PU1974v017n02ABEH004332 DOI: https://doi.org/10.1070/PU1974v017n02ABEH004332

Sparrow, E. W. Goldstein, R. J. And Jonson, V. K. (1964). Thermal Instability In A Horizontal Fluid Layer : Effect of Boundary Conditions And Nonlinear Temperature Profile", Journal of Fluid Mechanics, 513-528. https://doi.org/10.1017/S0022112064000386 DOI: https://doi.org/10.1017/S0022112064000386

Vaidyanathan, G. Sekar, R. Ramanathan, A. (2002). Effect of Magnetic Field Dependent Viscosity On Ferroconvection In Rotating Porous Mediu, Indian Journal of Pure And Applied Mathematics, 159-165. https://doi.org/10.1016/S0304-8853(02)00355-4 DOI: https://doi.org/10.1016/S0304-8853(02)00355-4

Downloads

Published

2022-04-29

How to Cite

Kumar R, M., & Nanjundappa, C. E. (2022). PENETRATIVE THERMO-GRAVITATIONAL AND SURFACE-TENSION DRIVEN CONVECTION IN A FERROFLUID LAYER THROUGH VOLUMETRIC INTERNAL HEATING WITH VARIABLE VISCOSITY . International Journal of Engineering Technologies and Management Research, 9(4), 78–96. https://doi.org/10.29121/ijetmr.v9.i4.2022.1140