ELECTROCOAGULATION/ELECTROFLOTATION OF REAL TEXTILE EFFLUENT: IMPROVEMENT OF THE PROCESS IN NONCONVENTIONAL PILOT EXTERNAL LOOP AIRLIFT REACTOR

Authors

  • Mohammed Elhafdi Department of Process Engineering, High School of Technology - Hassan II University, Casablanca, Morocco
  • Abderrahim Dassaas Department of Chemistry, Faculty of Science AïnChock, Hassan II University Casablanca, Morocco
  • Mohamed Benchikhi Department of Chemistry, Faculty of Science AïnChock, Hassan II University Casablanca, Morocco
  • Hachemi Chenik Department of Chemistry, Faculty of Science AïnChock, Hassan II University Casablanca, Morocco
  • Abdelhafid Essadki Department of Process Engineering, High School of Technology - Hassan II University, Casablanca, Morocco
  • Mohamed Azzi Department of Chemistry, Faculty of Science AïnChock, Hassan II University Casablanca, Morocco

DOI:

https://doi.org/10.29121/ijetmr.v6.i11.2019.462

Keywords:

Pilot External-Loop Airlift Reactor, Electrocoagulation, Electroflotation, Real Textile Effluents

Abstract

A pilot external-loop airlift reactor (ELAR) of 150 liters was designed and used as a non – conventional reactor to carry out Electrocoagulation/Electroflotation to treat real textile effluents containing disperse and reactive dyes. The designed reactor ensure the recovery of sludge by electroflotation (EF) in which complete flotation of the pollutants is achieved without additional mechanical power in the pilot external-loop airlift reactor (ELAR), using only the overall liquid recirculation induced by H2microbubbles generated by water electrolysis without filtration process. Aluminum, iron electrodes and combined aluminum – iron electrodes were tested. The obtained results were interesting as they would help managing the Electrocoagulation/Electroflotation process in pilot external – loop airlift reactor to remove real textile effluent. The treatment of the mixtures of the real textile dyeing industry is better when using a combination of the electrodes of iron and aluminum providing a better treatment efficiency of 80% and a lower specific energy consumption (50 kWh/kg dye). In order to analyze the by-product of the electrocoagulation (EC) and the treated effluent, different techniques were used to elucidate the role of different kind of anodes especially when the combined iron – aluminum were used simultaneously as sacrificial anodes.

Downloads

Download data is not yet available.

References

WHO, Guidelines for drinking-water quality, Third edition incorporating the first and second addenda, Volume 1 recommendations. World Health Organization 2008.

R. W. Peters, T. J. Walker, J E Eriksen, T. K. Cheng, Y. Ku, W. M. Lee, J. Water. Pollut. Control. Fed., 57 (1985) 503–517.

J. Q. Jiang, J. D. Graham, Environ. Technol. 17 (1996) 937–950. DOI: https://doi.org/10.1080/09593330.1996.9618422

S. F. Kang, H. M. Chang, Water Res., 36 (1997) 215–222.

A.J. Greaves, D. A. S Phillips, J. A. Taylor, JSDC., 115 (1999) 363–365.

G. Chen, L. Lei, P. L. Yue, Ind. Eng. Chem. Res., 38 (1999) 1837–1843.

W. Chu, C. W. Ma, Water. Res., 34 (2000) 3153–3160.

S. H. Lin, C. H. Lai, Water.Res., 34 (2000) 763–772.

G.Sun, X.Xu, Ind. Eng. Chem. Res., 36 (1997) 808–812.

J. S. Do, M. L. Chen, J. Appl. Electrochem 24 (1994) 785–790. DOI: https://doi.org/10.1007/BF00578095

S. H. Lin, C. F. Peng, Water Res. 28 (1994) 277–876. DOI: https://doi.org/10.1016/0043-1354(94)90264-X

G. Chen, Sep. Pur. Tech., 38 (2004) 11-41.

M. Y. A. Mollah, R. Schennach, J. R. Parga, D. L. Cocke, J. Hazard. Mater.,84(2001)29-41. DOI: https://doi.org/10.1016/S0304-3894(01)00176-5

J. Núñez, M. Yeber, N. Cisternas, J. Hazard. Mate., 371 (2019) 705-711.

P. K. Holt, G. W. Barton, M. Wark, C. A. Mitchell, Colloid. Surf. A: Physicochem. Eng. Aspects., 211 (2002) 233–248. DOI: https://doi.org/10.1016/S0927-7757(02)00285-6

T. H. Kim, C. Park, E. B. Shin, S. Kim, Desalination., 150 (2002) 165–175.

M. Kobya, O. T. Can, M. Bayramoglu, J. Hazard. Mater., 100 (2003) 163–178.

M. Bayramoglu, M. Kobya, O. T. Can, M. Sozbir, Sep. Purif. Technol., 37 (2004) 117–125.

M. Y. A. Mollah, P. Morkovsky, J. A. G. Gomes, M. Kesmez, J. R. Parga, D. L. Cocke, J. Hazard. Mater., 114 (2004) 199–210.

P. K. Holt, G. W. Barton, C. A. Mitchell, Chemosphere., 59 (2005) 355–367.

O. T. Can, M. Kobya, E. Demirbas, M. Bayramoglu Chemosphere., 62 (2006) 181–187.

M. Kobya, E. Demirbas, O. T. Can, M. Bayramoglu, J. Hazard. Mater., 132 (2006)183-188.

M. Bayramoglu, M. Eyvaz, M. Kobya, Chem. Eng. J., 128 (2007) 155–161.

N. S. Graça, A. M. Ribeiro, A. E. Rodrigues. Chem. Eng. Science., 197 (2019) 379-385.

H. D. Bassala, G. K. Dedzo, C. B. N. Bememba, P. M. T. Seumo, J. D. Dazie, Process. Safety. Env. Protect., 111 (2017) 122-127.

W. Baran, E. Adamek, M. Jajko, A. Sobczak, Chemosphere., 194 (2018) 381-389.

A. H. Essadki, M. Bennajah, B. Gourich, C. Vial, M. Azzi, H. Delmas, Chem. Eng. Process., 47 (2008) 1211–1223.[28] A. H. Essadki, B. Gourich., C. Vial, H. Delmas, M. Bennajah, Journal. Hazard. Mater., 168 (2009) 1325–1333.

W. Balla, A. H Essadki, B. Gourich, A. Dassaa, H. Chenik, M. Azzi, J. Hazard. Mater., 184 (2010) 710–716.

A. H. Essadki, B. Gourich, C. Vial, H. Delmas, Chem. Eng. Science., 66 (2011) 3125–3132.

J. Duan, J. Gregory, Adv. Coll. Inter. Science., 100–102 (2003) 475–502.

A. K. Verma, Journal. Water. Proc. Eng., 20 (2017) 168-172.

K. P. Papadopoulos, R. Argyriou, C. N. Economou, N. Charalampous, S. Dailianis, D. V. Vayenas, Journal. Env. Manag., 237 (2019) 442-448.

M. Y. Mollah, J. A. G. Gomes, K. K. Das, D. L. Cocke, J Hazard Mater., 174 (2010) 851-858

Downloads

Published

2019-11-30

How to Cite

Elhafdi, M., Dassaas, A., Benchikhi, M., Chenik, H., Essadki, A., & Mohamed Azzi. (2019). ELECTROCOAGULATION/ELECTROFLOTATION OF REAL TEXTILE EFFLUENT: IMPROVEMENT OF THE PROCESS IN NONCONVENTIONAL PILOT EXTERNAL LOOP AIRLIFT REACTOR . International Journal of Engineering Technologies and Management Research, 6(11), 43–58. https://doi.org/10.29121/ijetmr.v6.i11.2019.462