ON THE TERNARY QUADRATIC DIOPHANTINE EQUATION 6z2 = 6x2 – 5y2

Authors

  • M. A. Gopalan Professor, Department of Mathematics, SIGC, Trichy-620002, Tamil Nadu, INDIA
  • S. Nandhini M.Phil Scholar, Department of Mathematics, SIGC, Trichy-620002, Tamil Nadu, INDIA
  • J. Shanthi Lecturer, Department of Mathematics, SIGC, Trichy-620002, Tamil Nadu, INDIA

DOI:

https://doi.org/10.29121/ijetmr.v1.i1.2015.22

Keywords:

Ternary quadratic, integer solutions, figurate numbers, homogeneous quadratic, polygonal number, pyramidal numbers

Abstract

The ternary homogeneous quadratic equation given by 6z2 = 6x2 -5y2 representing a cone is analyzed for its non-zero distinct integer solutions. A few interesting relations between the solutions and special polygonal and pyramided numbers are presented. Also, given a solution, formulas for generating a sequence of solutions based on the given solutions are presented.

Downloads

Download data is not yet available.

References

Dickson LE.History of Theory of Numbers and Diophantine Analysis,Vol 2,Dove publications,New York 2005.

Mordell LJ. Diophantine Equations” Academic Press, Newyork 1970.

Carmicheal RD.The Theory of Numbers and Diophantine Analysis , Dover publications,,Newyork 1959.

Gopalan MA,Geetha D. Lattice points on the Hyperboloid of two sheets x 6 6 2 5 4 2 2 2  xy  y  x  y   z  Impact J Sci Tech 2010;4:23-32.

Gopalan MA ,Vidhyalakshmi S,Kavitha A,Integral points on the Homogeneous cone 2 2 2 z  2x -7y ,The Diophantus J Math 2012;1(2):127-136.

Gopalan MA,Vidhyalakshmi S, Sumathi G.Lattice points on the Hyperboloid of one sheet 4z 2x 3y 4 2 2 2    . Diophantus J Math 2012; 1(2): 109-115.

Gopalan MA,Vidhyalakshmi S,Lakshmi K. Integral points on the Hyperboloid of two sheets 3y 7x - z 21 2 2 2   . Diophantus J Math 2012; 1(2): 99-107.

Gopalan MA,Vidhyalakshmi S, Mallika S.Observations on Hyperboloid of one sheet x 2y 2 2 2 2   z  . Bessel J Math 2012; 2(3): 221-226.

Gopalan MA ,Vidhyalakshmi S,Usha Rani TR , Mallika S,Integral points on the Homogeneous cone 6z 3 2 0 2 2 2  y  x  ,The Impact J Sci Tech 2012;6(1):7-13.

Gopalan MA ,Vidhyalakshmi S,Sumathi G,Lattice points on the Elliptic parabolid 2 2 z  9x  4y ,Advances in Theoretical and Applied Mathematics 2012;m7(4):379- 385

Gopalan MA ,Vidhyalakshmi S,Usha Rani TR,Integral points on the nonhomogeneous cone 2z 4 8 4 0 2  xy  x  z  , Global Journal of Mathamatics and Mathamatical sciences 2012;2(1):61-67

Gopalan MA ,Vidhyalakshmi S,Lakshmi K.,Lattice points on the Elliptic paraboloid 16y 9z 4x 2 2   , Bessel J of Math 2013; 3(2): 137-145.

Gopalan MA ,Vidhyalakshmi S,Uma Rani J , Integral points on the Homogeneous cone 2 2 2 4y  x  37z ,Cayley J of Math 2013;2(2):101- 107.

Gopalan MA,Vidhyalakshmi S, Kavitha A. Observations on the Hyperboloid of two sheets 7x 3y z ( ) 4 2 2 2    z y  x  . International Journal of Latest Research in Science and technology 2013; 2(2): 84-86.

Gopalan MA ,Sivagami B. Integral points on the homogeneous cone 2 2 2 z  3x 6y . ISOR Journal of Mathematics 2013; 8(4): 24-29. DOI: https://doi.org/10.9790/5728-0842429

Gopalan MA,Geetha V. Lattice points on the homogeneous cone z 2x 8y 6xy 2 2 2    . Indian journal of Science 2013; 2: 93-96.

Gopalan MA, Vidhyalakshmi S ,Maheswari D. Integral points on the homogeneous cone 2 2 2 35z  2x 3y . Indian journal of Science 2014; 7: 6-10.

Gopalan MA, Vidhyalakshmi S ,Umarani J. On the Ternary Quadratic Diophantine Equation 2 2 2 6(x  y ) 8xy  21z . Sch J Eng Tech 2014; 2(2A): 108- 112.

Meena K,Vidhyalakshmi S, Gopalan MA , Priya IK . Integral points on the cone 2 2 2 3(x  y )-5xy  47z . Bulletin of Mathematics and statistic Research 2014; 2(1): 65-70.

Gopalan MA, Vidhyalakshmi S ,Nivetha S.On Ternary Quadratic Diophantine Equation 2 2 2 4(x  y ) 7xy  31z . Diophantus J Math 2014; 3(1): 1-7.

Meena K,Vidhyalakshmi S, Gopalan MA ,Thangam SA. Integral solutions on the homogeneous cone 2 2 2 28z  4x 3y . Bulletin of Mathematics and statistic Research 2014; 2(1): 47-53.

Santhi J ,Gopalan MA, Vidhyalakshmi S. Lattice points on the homogeneous cone 2 2 2 8(x  y ) 15xy  56z . Sch Journal of Phy Math Stat 2014; 1(1): 29-32.

Gopalan MA, Vidhyalakshmi S ,Mallika S.On Ternary Quadratic Diophantine Equation 2 2 2 8(x  y ) 15xy  80z .BOMSR 2014; 2(4): 429-433.

Meena K,Gopalan MA, Vidhyalakshmi S ,Thiruniraiselvi N.Observations on the Ternary Quadratic Diophantine Equation 2 2 2 x 9y  50z .International Journal of Applied Research 2015; 1(2): 51-53

Downloads

Published

2015-04-30

How to Cite

Gopalan, M., Nandhini, S., & Shanthi, . J. . (2015). ON THE TERNARY QUADRATIC DIOPHANTINE EQUATION 6z2 = 6x2 – 5y2. International Journal of Engineering Technologies and Management Research, 1(1), 14–22. https://doi.org/10.29121/ijetmr.v1.i1.2015.22