FATTY ACID PROFILE OF NON-CONFORMING POOLED HUMAN MILK AS AFFECTED BY THE PROCESSING AND STORAGE CONDITIONS

Authors

  • Otávio A. S. Ribeiro Departamento De Tecnologia De Alimentos, Universidade Federal De Viçosa (UFV), Av. P.H. Rolfs, S/N, 36570-900. Viçosa, MG, Brazil https://orcid.org/0000-0002-1997-9891
  • Kely P. Correa Departamento De Tecnologia De Alimentos, Universidade Federal De Viçosa (UFV), Av. P.H. Rolfs, S/N, 36570-900. Viçosa, MG, Brazil
  • Mauricio O. Leite Centro Multidisciplinar, Universidade Federal do Acre (UFAC), Estrada do Canela Fina, Km 12, Gleba do Formoso, 69980-000. Cruzeiro do Sul, Ac, Brazil https://orcid.org/0000-0002-1666-2581
  • Marcio A. Martins Departamento de Engenharia Agrícola, Universidade Federal de Viçosa (UFV), Av. P.H. Rolfs, s/n, 36570-900. Viçosa, MG, Brazil
  • Jane S. R. Coimbra Departamento De Tecnologia De Alimentos, Universidade Federal De Viçosa (UFV), Av. P.H. Rolfs, S/N, 36570-900. Viçosa, MG, Brazil https://orcid.org/0000-0002-5998-189X

DOI:

https://doi.org/10.29121/granthaalayah.v9.i2.2021.3276

Keywords:

Gas Chromatography, Lipids, Nutrition, Preterm, Storage

Abstract [English]

The fatty acid's contents of non-conform pooled human milk can be affected by different processing and storage operational conditions. Besides, the knowledge of changes in the human milk fatty acid profile can help indicate its use in a given storage period, according to each newborn's specific need. Thus, in the present work, changes in the fatty acid profiles of three types of human milk (raw; pasteurized at 62.5 °C for 30 min; homogenized at 40 oC for 30 s followed by pasteurization) were studied during storage for six months in a freezer at -18 oC. Large variations were observed in the concentrations of polyunsaturated fatty acids, particularly of docosahexaenoic acid, with a reduction of almost 50% of its total. Palmitic and stearic acid contents also changed according to the conditions of processing and storage. Correlations between the decrease of long fatty acid chains and the increase of medium and short chains were verified.  Thus, we observe that operational conditions of processing and storing change human milk lipid profile, with some nutritional losses.

Downloads

Download data is not yet available.

References

R. Yuhas, K. Pramuk, and E. L. Lien, “Human Milk Fatty Acid Composition from Nine Countries Varies Most in DHA,” Lipids, vol. 41, no. 9, pp. 2–4, 2006. DOI: https://doi.org/10.1007/s11745-006-5040-7

J. Kim and J. Friel, “Lipids and human milk,” Lipid Technol., vol. 24, no. 5, pp. 103–105, 2012, doi: 10.1002/lite.201200190. DOI: https://doi.org/10.1002/lite.201200190

B. A. Juber, K. H. Jackson, K. B. Johnson, W. S. Harris, and M. L. Baack, “Breast milk DHA levels may increase after informing women: A community-based cohort study from South Dakota USA,” Int. Breastfeed. J., vol. 12, no. 1, pp. 1–9, 2017, doi: 10.1186/s13006-016-0099-0. DOI: https://doi.org/10.1186/s13006-016-0099-0

C. Sun, W. Wei, H. Su, X. Zou, and X. Wang, “Evaluation of sn -2 fatty acid composition in commercial infant formulas on the Chinese market : A comparative study based on fat source and stage,” Food Chem., vol. 242, no. August 2017, pp. 29–36, 2018. DOI: https://doi.org/10.1016/j.foodchem.2017.09.005

M. Quigley, N. D. Embleton, and W. McGuire, “Formula versus maternal breast milk for feeding preterm or low birth weight infants,” Cochrane Database Syst. Rev., no. 6, 2018, doi: 10.1002/14651858.CD002972.pub3. DOI: https://doi.org/10.1002/14651858.CD002972.pub3

L. R. B. Mariutti, G. C. Nogueira, and N. Bragagnolo, “Lipid and Cholesterol Oxidation in Chicken Meat Are Inhibited by Sage but Not by Garlic,” J. Food Sci., vol. 76, no. 6, pp. C909–C915, Aug. 2011, doi: 10.1111/j.1750-3841.2011.02274.x. DOI: https://doi.org/10.1111/j.1750-3841.2011.02274.x

T. Nah, S. H. Kessler, K. E. Daumit, J. H. Kroll, S. R. Leone Abe, and K. R. Wilson, “OH-initiated oxidation of sub-micron unsaturated fatty acid particles,” Phys. Chem. Chem. Phys., vol. 15, pp. 18649–18663, 2013, doi: 10.1039/c3cp52655k. DOI: https://doi.org/10.1039/c3cp52655k

S. A. Vieira, G. Zhang, and E. A. Decker, “Biological Implications of Lipid Oxidation Products,” J. Am. Oil Chem. Soc., vol. 94, no. 3, pp. 339–351, 2017, doi: 10.1007/s11746-017-2958-2. DOI: https://doi.org/10.1007/s11746-017-2958-2

J. A. G. de Almeida, V. Guimarães, and F. R. Novak, “Seleção e Classificação do Leite Humano Ordenhado Cru,” Centro de Referência Nacional para Bancos de Leite Humano – Instituto Fernandes Figueira / Fundação Oswaldo Cruz / Ministério da Saúde, 2011. https://rblh.fiocruz.br/sites/rblh.fiocruz.br/files/usuario/79/nt_23.11_selec._classif_lhocru.pdf (accessed Sep. 21, 2020).

J. A. G. de Almeida, F. R. Novak, and V. Guimarães, “Embalagem para o Leite Humano Ordenhado,” Cent. Ref. Nac. para Bancos Leite Hum. – Inst. Fernandes Figueira / Fundação Oswaldo Cruz / Ministério da Saúde, pp. 3–6, 2011.

E. G. BLIGH and W. J. DYER, “A RAPID METHOD OF TOTAL LIPID EXTRATION AND PURIFICATION,” Can. J. Biochem. Physiol., vol. 37, pp. 911–917, 1959, doi: dx.doi.org/10.1139/cjz-2013-0052. DOI: https://doi.org/10.1139/y59-099

M. P. Silva, D. R. Cavalli, and T. C. R. M. Oliveira, “Avaliação do padrão coliformes a 45oC e comparação da eficiência das técnicas dos tubos múltiplos e Petrifilm EC na detecção de coliformes totais e Escherichia coli em alimentos,” Ciência e Tecnol. Aliment., vol. 26, no. 2, pp. 352–359, 2006, doi: 10.1590/s0101-20612006000200018. DOI: https://doi.org/10.1590/S0101-20612006000200018

B. Martínez et al., “Development of a simple method for the quantitative determination of fatty acids in milk with special emphasis on long-chain fatty acids,” CyTA J. Food, vol. 6337, 2012, doi: 10.1080/19476337.2010.538860. DOI: https://doi.org/10.1080/19476337.2010.538860

“R: The R Project for Statistical Computing.” https://www.r-project.org/ (accessed Mar. 31, 2019).

F. DAVIDOFF and E. D. KORN, “The Conversion of Long Chain Saturated Fatty Acids To Their Alpha,” J. Biol. Chem., vol. 239, no. 8, pp. 2496–2506, 1964.

C. Leber, J. W. Choi, B. Polson, and N. A. Da Silva, “Disrupted short chain specific β-oxidation and improved synthase expression increase synthesis of short chain fatty acids in Saccharomyces cerevisiae,” Biotechnol. Bioeng., vol. 113, no. 4, pp. 895–900, 2016, doi: 10.1002/bit.25839. DOI: https://doi.org/10.1002/bit.25839

S. M. B. Hashemi et al., “Fermentation of sarshir (kaymak) by lactic acid bacteria: antibacterial activity, antioxidant properties, lipid and protein oxidation and fatty acid profile,” J. Sci. Food Agric., vol. 97, no. 13, pp. 4595–4603, 2017, doi: 10.1002/jsfa.8329. DOI: https://doi.org/10.1002/jsfa.8329

F. Davidoff and E. D. Korn, “THE CONVERSION OF LONG CHAIN SATURATED FATTY ACIDS TO THEIR ALPHA, BETA-UNSATURATED, BETA, GAMMA-UNSATURATED, AND BETA-HYDROXY DERIVATIVES BY ENZYMES FROM THE CELLULAR SLIME MOLD, DICTYOSTELIUM DISCOIDEUM,” J. Biol. Chem., vol. 239, p. 2496—2506, 1964, [Online]. Available: http://europepmc.org/abstract/MED/14235527.

V. Grote et al., “Breast milk composition and infant nutrient intakes during the first 12 months of life,” Eur. J. Clin. Nutr., vol. 70, no. 2, pp. 250–256, 2016, doi: 10.1038/ejcn.2015.162. DOI: https://doi.org/10.1038/ejcn.2015.162

S. M. Innis, “Dietary Triacylglycerol Structure and Its Role in Infant Nutrition,” Adv. Nutr., vol. 2, no. 3, pp. 275–283, 2011, doi: 10.3945/an.111.000448. DOI: https://doi.org/10.3945/an.111.000448

D. K. Dror and L. H. Allen, “Overview of Nutrients in Human Milk,” Advantages Nutr., vol. 9, pp. 278S-294S, 2018. DOI: https://doi.org/10.1093/advances/nmy022

A. D. George, M. C. L. Gay, R. D. Trengove, and D. T. Geddes, “Human Milk Lipidomics : Current Techniques and Methodologies,” Nutrients, vol. 10, 2018, doi: 10.3390/nu10091169. DOI: https://doi.org/10.3390/nu10091169

E. Koh and J. Surh, “Food types and frying frequency affect the lipid oxidation of deep frying oil for the preparation of school meals in Korea,” Food Chem., vol. 174, pp. 467–472, 2015, doi: 10.1016/j.foodchem.2014.11.087. DOI: https://doi.org/10.1016/j.foodchem.2014.11.087

W. P. Batiston, S. A. Maruyama, S. T. M. Gomes, J. V. Visentainer, N. E. De Souza, and M. Matsushita, “Absolute quantification of fatty acid and proximate composition of cow and goat powdered milks,” J. Braz. Chem. Soc., vol. 23, no. 10, pp. 1907–1914, 2012, doi: 10.1590/S0103-50532012005000061. DOI: https://doi.org/10.1590/S0103-50532012005000061

T. S. Kim, J. Yeo, J. Y. Kim, M. J. Kim, and J. Lee, “Determination of the degree of oxidation in highly-oxidised lipids using profile changes of fatty acids,” Food Chem., vol. 138, no. 2–3, pp. 1792–1799, 2013, doi: 10.1016/j.foodchem.2012.11.119. DOI: https://doi.org/10.1016/j.foodchem.2012.11.119

M. Sabetian, S. T. Delshad, S. Moini, H. R. Islami, R. Beglaryan, and A. Motalebi, “Identification and changes in fatty acid profile of rainbow trout (Oncorhynchus mykiss) fillet during frozen storage (-18°C),” J. Aquat. Food Prod. Technol., vol. 23, no. 4, pp. 321–332, 2014, doi: 10.1080/10498850.2012.717592. DOI: https://doi.org/10.1080/10498850.2012.717592

A. Lapillonne, S. Groh-Wargo, C. H. Lozano Gonzalez, and R. Uauy, “Lipid needs of preterm infants: Updated recommendations,” J. Pediatr., vol. 162, no. 3 SUPPL., pp. 37–47, 2013, doi: 10.1016/j.jpeds.2012.11.052. DOI: https://doi.org/10.1016/j.jpeds.2012.11.052

V. Petit, L. Sandoz, and C. L. Garcia-Rodenas, “Importance of the regiospecific distribution of long-chain saturated fatty acids on gut comfort, fat and calcium absorption in infants,” Prostaglandins Leukotrienes and Essential Fatty Acids, vol. 121. pp. 40–51, 2017, doi: 10.1016/j.plefa.2017.05.007. DOI: https://doi.org/10.1016/j.plefa.2017.05.007

K. Liu, Y. Liu, and F. Chen, “Effect of storage temperature on lipid oxidation and changes in nutrient contents in peanuts,” Food Sci. Nutr., vol. 7, no. 7, pp. 2280–2290, 2019, doi: 10.1002/fsn3.1069. DOI: https://doi.org/10.1002/fsn3.1069

Y.-B. He, H.-W. Ren, Y.-T. Cao, H.-J. Li, Z. Zhang, and N. Liu, “Comparing the composition and trend of fatty acid in human milk with bovine milk and infant formula in northeast region of China,” CyTA - Journal of Food, vol. 14, no. 4. pp. 632–638, 2016, doi: 10.1080/19476337.2016.1188858. DOI: https://doi.org/10.1080/19476337.2016.1188858

C. Gao et al., “Comparison of Human Milk Fatty Acid Composition of Women From Cambodia and Australia,” J. Hum. Lact., vol. 34, no. 3, pp. 585–591, 2018, doi: 10.1177/0890334418772279. DOI: https://doi.org/10.1177/0890334418772279

H. Kim, S. Kang, B. M. Jung, H. Yi, J. A. Jung, and N. Chang, “Breast milk fatty acid composition and fatty acid intake of lactating mothers in South Korea,” Br. J. Nutr., vol. 117, no. 4, pp. 556–561, 2017, doi: 10.1017/S0007114517000253. DOI: https://doi.org/10.1017/S0007114517000253

Downloads

Published

2021-02-19

How to Cite

Ribeiro, O. A. S., Correa, K. P., Leite, M. O., Martins, M. A., & Coimbra, J. S. R. (2021). FATTY ACID PROFILE OF NON-CONFORMING POOLED HUMAN MILK AS AFFECTED BY THE PROCESSING AND STORAGE CONDITIONS. International Journal of Research -GRANTHAALAYAH, 9(2), 46–54. https://doi.org/10.29121/granthaalayah.v9.i2.2021.3276

Most read articles by the same author(s)