• Aluísio Marques da Fonseca Mestrado Acadêmico em Sociobiodiversidades e Tecnologias Sustentáveis – MASTS, Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, 62785-000, Acarape-CE, Brazil
  • Antonio Luthierre Gama Cavalcante Instituto de Ciências Exatas e da Natureza, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, 62785-000, Acarape-CE, Brazil
  • Rubson Mateus Matos Carvalho Instituto de Ciências Exatas e da Natureza, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, 62785-000, Acarape-CE, Brazil
  • Jeferson Falcão do Amaral Instituto de Ciências da Saúde, Universidade da Integração Internacional da Lusofonia AfroBrasileira, 62785-000, Acarape-CE, Brazil
  • Regilany Paulo Colares Instituto de Ciências Exatas e da Natureza, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, 62785-000, Acarape-CE, Brazil
  • Emmanuel Silva Marinho Faculdade de Filosofia Dom Aureliano Matos - FAFIDAM, Universidade Estadual do Ceará, 62.930-000, Centro, Limoeiro do Norte-CE, Brazil
  • Moises Maia Neto Curso de graduação em farmácia, Centro Universitário Fametro, 60010-260, Fortaleza-CE, Brazil
Keywords: Affinity Energy, Ligand, Coronavirus, SARS-COV-2


The emergence of the new coronavirus (SARS-COV-2) is known to trigger some common diseases in humans such as pneumonia and diarrhea, the search for appropriate therapy combat COVID-19 has been intense and exhaustive.

Motivation/Background: Thus, based on the rational study of drugs, a survey of potential ligands that can inhibit the vital protein in virus replication, the main protease (Mpro), has been carried out worldwide.

Method: In this battle, the antiviral Remdesivir, which was created to fight the Ebola virus, proved, through the molecular anchorage, to be quite effective against its target because it presented affinity energy far superior to its co-crystallized ligand.

Results: In this work, a study was carried out with Remdesivir and its derivatives, obtained in a zinc database15, to present a possible alternative, based on its structure-affinity, as potential Inhibitors of SARS-COV-2 MPro, with affinity energy ranging from -6.3 to -8.2 kcal/mol.

Conclusions: It was found that both remdesivir and its diastereoisomeric derivatives have an affinity with the main protease (Mpro), responsible for viral replication, with inhibition capacity and possible alternative in its treatment.


C. Leung, Clinical features of deaths in the novel coronavirus epidemic in China, Rev. Med. Virol. (2020). DOI:

M. Jansson, X. Liao, J. Rello, Strengthening ICU health security for a coronavirus epidemic, Intensive Crit. Care Nurs. 57 (2020). DOI:

H.A. Rothan, S.N. Byrareddy, The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak, J. Autoimmun. 109 (2020) 1–4. DOI:

Brasil, COVID19 Painel Coronavírus, Coronavirus - Bras. (2020). (accessed March 3, 2020).

I. Tuñas, E. Silva, S. Santiago, K. Maia, G. Silva-Júnior, Doença pelo Coronavírus 2019 (COVID-19): Uma abordagem preventiva para Odontologia, Rev. Bras. Odontol. 77 (2020) 1–6.

M.A.P. Sáfadi, C. Rodrigues, A.P. Carvalho, A.M. Pimentel, E.N. Berezin, E. Coser, M.A.W. Rocha, S.R. Marques, Novo coronavírus (COVID-19), Dep. Científico Infectol. • Soc. Bras. Pediatr. (2020) 1–12.

D. Benvenuto, M. Giovanetti, A. Ciccozzi, S. Spoto, S. Angeletti, M. Ciccozzi, The 2019-new coronavirus epidemic: Evidence for virus evolution, J. Med. Virol. 92 (2020) 455–459. DOI:

Y. Yang, F. Peng, R. Wang, K. Guan, T. Jiang, G. Xu, J. Sun, C. Chang, The deadly coronaviruses: The 2003 SARS pandemic and the 2020 novel coronavirus epidemic in China, J. Autoimmun. 109 (2020). DOI:

J.Y.K. Chan, E.W.Y. Wong, W. Lam, Practical Aspects of Otolaryngologic Clinical Services during the 2019 Novel Coronavirus Epidemic: An Experience in Hong Kong, JAMA Otolaryngol. - Head Neck Surg. 146 (2020) 519–520. DOI:

F. Kofi Ayittey, C. Dzuvor, M. Kormla Ayittey, N. Bennita Chiwero, A. Habib, Updates on Wuhan 2019 novel coronavirus epidemic, J. Med. Virol. 92 (2020) 403–407. DOI:

C. Ronco, P. Navalesi, J.L. Vincent, Coronavirus epidemic: preparing for extracorporeal organ support in intensive care, Lancet Respir. Med. 8 (2020) 240–241. DOI:

C. Yang, J. Wang, A mathematical model for the novel coronavirus epidemic in Wuhan, China, Math. Biosci. Eng. 17 (2020) 2708–2724. DOI:

M. Shehata, S. Zhao, P. Gill, Epidemics and primary care in the UK, Fam. Med. Community Heal. 8 (2020) 1–6. DOI:

P.Y. Boëlle, C. Souty, T. Launay, C. Guerrisi, C. Turbelin, S. Behillil, V. Enouf, C. Poletto, B. Lina, S. van der Werf, D. Lévy-Bruhl, V. Colizza, T. Hanslik, T. Blanchon, Excess cases of influenza-like illnesses synchronous with coronavirus disease (COVID-19) epidemic, France, March 2020, 2020. DOI:

A. Chevance, D. Gourion, N. Hoertel, P.M. Llorca, P. Thomas, R. Bocher, M.R. Moro, V. Laprévote, A. Benyamina, P. Fossati, M. Masson, E. Leaune, M. Leboyer, R. Gaillard, Ensuring mental health care during the SARS-CoV-2 epidemic in France: A narrative review, Encephale. 46 (2020) 193–201. DOI:

P. Magal, G. Webb, Predicting the Number of Reported and Unreported Cases for the COVID-19 Epidemic in South Korea, Italy, France and Germany, SSRN Electron. J. (2020). DOI:

J. Ferguson, J.I. Rosser, O. Quintero, J. Scott, A. Subramanian, M. Gumma, A. Rogers, S. Kappagoda, Characteristics and outcomes of coronavirus disease patients under nonsurge conditions, Northern California, USA, March–April 2020, Emerg. Infect. Dis. 26 (2020) 1679–1685. DOI:

S. Djilali, B. Ghanbari, Coronavirus pandemic: A predictive analysis of the peak outbreak epidemic in South Africa, Turkey, and Brazil, Chaos, Solitons and Fractals. 138 (2020). DOI:

R.G.S. Leonel, R. Chammas, G.A. et al. Plonski, University participation in the production of molecular diagnostic tests for the novel coronavirus in Brazil: the response to health challenges, Cad. Saúde Pública. 36 (2020) 26.

BRASIL, Protocolo de Manejo Clínico da Covid-19 na Atenção Especializada, Ministério da Saúde, 2020.

P.X. Rynkiewicz, G.A. Babbitt, F. Cui, A.O. Hudson, M.L. Lynch, A comparative survey of betacoronavirus strain molecular dynamics identifies key ACE2 binding sites, BioRxiv. (2020). DOI:

W. Peng, Y. Xu, D. Han, F. Feng, Potential mechanism underlying the effect of matrine on COVID-19 patients revealed through network pharmacological approaches and molecular docking analysis, Arch. Physiol. Biochem. (2020). DOI:

C. Shivanika, K.S. Deepak, V. Ragunathan, T.S.A. Pawan, D.P. Brindha, Molecular docking, validation, dynamics simulations, and pharmacokinetic prediction of natural compounds against the SARS-CoV-2 main-protease, J. Biomol. Struct. Dyn. (2020) 1–27. DOI:

R. Majumder, M. Mandal, Screening of plant-based natural compounds as a potential COVID-19 main protease inhibitor: an in silico docking and molecular dynamics simulation approach, J. Biomol. Struct. Dyn. (2020) 1–16. DOI:

W. Martin, F. Cheng, Repurposing of FDA-Approved Toremifene to Treat COVID-19 by blocking the spike glycoprotein and NSP14 of SARS-CoV-2, J. Proteome Res. (2020). DOI:

D. Gentile, V. Patamia, A. Scala, M.T. Sciortino, A. Piperno, A. Rescifina, Putative inhibitors of SARS-COV-2 main protease from a library of marine natural products: A virtual screening and molecular modeling study, Mar. Drugs. 18 (2020) 1–19. DOI:

J. Liang, C. Karagiannis, E. Pitsillou, K.K. Darmawan, K. Ng, A. Hung, T.C. Karagiannis, Site mapping and small molecule blind docking reveal a possible target site on the SARS-CoV-2 main protease dimer interface, Comput. Biol. Chem. 89 (2020). DOI:

W.B. Cardoso, S.A. Mendanha, Molecular dynamics simulation of docking structures of SARS-CoV-2 main protease and HIV protease inhibitors, J. Mol. Struct. 1225 (2021). DOI:

J.H. Beigel, K.M. Tomashek, L.E. Dodd, A.K. Mehta, B.S. Zingman, A.C. Kalil, E. Hohmann, H.Y. Chu, A. Luetkemeyer, S. Kline, D. Lopez de Castilla, R.W. Finberg, K. Dierberg, V. Tapson, L. Hsieh, T.F. Patterson, R. Paredes, D.A. Sweeney, W.R. Short, G. Touloumi, D.C. Lye, N. Ohmagari, M. Oh, G.M. Ruiz-Palacios, T. Benfield, G. Fätkenheuer, M.G. Kortepeter, R.L. Atmar, C.B. Creech, J. Lundgren, A.G. Babiker, S. Pett, J.D. Neaton, T.H. Burgess, T. Bonnett, M. Green, M. Makowski, A. Osinusi, S. Nayak, H.C. Lane, Remdesivir for the Treatment of Covid-19 — Preliminary Report, N. Engl. J. Med. 1 (2020) 1–12. DOI:

M. Wang, R. Cao, L. Zhang, X. Yang, J. Liu, M. Xu, Z. Shi, Z. Hu, W. Zhong, G. Xiao, Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro, Cell Res. 30 (2020) 269–271. DOI:

S. Serapian, F. Marchetti, A. Triveri, G. Morra, M. Meli, E. Moroni, G.A. Sautto, A. Rasola, G. Colombo, The answer lies in the energy: how simple atomistic molecular dynamics simulations may hold the key to epitope prediction on the fully glycosylated SARS-CoV-2 spike protein, BioRxiv. (2020). DOI:

A. Martorana, C. Gentile, A. Lauria, In Silico Insights into the SARS CoV-2 Main Protease Suggest NADH Endogenous Defences in the Control of the Pandemic Coronavirus Infection, Viruses. 12 (2020) 1–15. DOI:

P. Rao, A. Shukla, P. Parmar, R.M. Rawal, B. V. Patel, M. Saraf, D. Goswami, Proposing a fungal metabolite-flaviolin as a potential inhibitor of 3CLpro of novel coronavirus SARS-CoV-2 identified using docking and molecular dynamics, J. Biomol. Struct. Dyn. (2020). DOI:

N. Vergadou, D.N. Theodorou, Molecular modeling investigations of sorption and diffusion of small molecules in Glassy polymers, Membranes (Basel). 9 (2019) 1–35. DOI:

M.K. Awad, M.F. Abdel-Aal, F.M. Atlam, H.A. Hekal, Molecular docking, molecular modeling, vibrational and biological studies of some new heterocyclic α-aminophosphonates, Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 206 (2019) 78–88. DOI:

K. Kodchakorn, Y. Poovorawan, K. Suwannakarn, P. Kongtawelert, Molecular modelling investigation for drugs and nutraceuticals against protease of SARS-CoV-2, J. Mol. Graph. Model. 101 (2020). DOI:

T. Sterling, J.J. Irwin, ZINC 15 - Ligand Discovery for Everyone, J. Chem. Inf. Model. 55 (2015) 2324–2337. DOI:

G.M. Morris, H. Ruth, W. Lindstrom, M.F. Sanner, R.K. Belew, D.S. Goodsell, A.J. Olson, Software news and updates AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility, J. Comput. Chem. 30 (2009) 2785–2791. DOI:

O. Trott, A.J. Olson, AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading, J. Comput. Chem. 31 (2010) 455–461. DOI:

H.M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T.N. Bhat, H. Weissig, I.N. Shindyalov, P.E. Bourne, The Protein Data Bank, Nucleic Acids Res. (2000). DOI:

Benet et al, BDDCS, the Rule of 5 and Drugability, Adv Drug Deliv Rev. (2016) 89–98. DOI:

K.E. Hevener, W. Zhao, D.M. Ball, K. Babaoglu, J. Qi, S.W. White, R.E. Lee, Validation of molecular docking programs for virtual screening against dihydropteroate synthase, J. Chem. Inf. Model. 49 (2009) 444–460. DOI:

A.B. Gurung, M.A. Ali, A. Bhattacharjee, M. Abul Farah, F. Al-Hemaid, F.M. Abou-Tarboush, K.M. Al-Anazi, F.S.M. Al-Anazi, J. Lee, Molecular docking of the anticancer bioactive compound proceraside with macromolecules involved in the cell cycle and DNA replication, Genet. Mol. Res. 15 (2016) 1–8. DOI:

Biovia, Dassault Systemes BIOVIA, Discovery Studio Modelling Environment, Release 4.5, Accelrys Softw. Inc. (2015).

K. Stierand, P.C. Maaß, M. Rarey, Molecular complexes at a glance: Automated generation of two-dimensional complex diagrams, Bioinformatics. 22 (2006) 1710–1716. DOI:

P.C. Fricker, M. Gastreich, M. Rarey, Automated drawing of structural molecular formulas under constraints, J. Chem. Inf. Comput. Sci. 44 (2004) 1065–1078. DOI:

Z. Jin, X. Du, Y. Xu, Y. Deng, M. Liu, Y. Zhao, B. Zhang, X. Li, L. Zhang, C. Peng, Y. Duan, J. Yu, L. Wang, K. Yang, F. Liu, R. Jiang, X. Yang, T. You, L. X, Y. X, B. F, L. H, L. X, G. L, X. W, X. G, Q. C, S. Z, J. H, R. Z, Y. H, Structure-based drug design, virtual screening and high-throughput 2 screening rapidly identify antiviral leads targeting COVID-19, BioRxiv. (2020) 1–29. DOI:

Y. Kumar, H. Singhc, C.N. Patel, In silico prediction of potential inhibitors for the Main protease of SARS-CoV-2 using molecular, J. Infect. Public Health. (2020) 1–14. DOI:

E.J. Barreiro, C.A.M. Fraga, Planejamento racional baseado no mecanismo de ação: Fármacos inteligentes, 2nd ed., Artmed, Rio de Janeiro, 2015.

G. Thomas, Química Medicinal: Uma introdução, 1a ed., Guanabara Koogan S.A., Rio de Janeiro, 2003.

A. Bagatini, C.R. Gomes, M.Z. Masella, G. Rezer, Dexmedetomidina: Farmacologia e uso clínico, Rev. Bras. Anestesiol. 52 (2002) 606–617. DOI:

S.I. Jeon, J.H. Lee, J.D. Andrade, P.G. De Gennes, Protein-surface interactions in the presence of polyethylene oxide. I. Simplified theory, J. Colloid Interface Sci. 142 (1991) 149–158. DOI:

D.N. Basov, M.M. Fogler, F.J. García De Abajo, Polaritons in van der Waals materials, Science (80-. ). (2016). DOI:

P.B. Hawk, B.L. Oser, W.H. Summerson, Practical physiological chemistry, 3th ed., Book Company, Nova Iorque, 1954.

How to Cite
Fonseca, A. M. da, Cavalcante, A. L. G., Carvalho, R. M. M., Amaral, J. F. do, Colares, R. P., Marinho, E. S., & Neto, M. M. (2020). STUDY OF THE INHIBITION POTENTIAL OF REMDESIVIR DERIVATIVES ON MPRO OF SARS-COV-2. International Journal of Research -GRANTHAALAYAH, 8(11), 164-174.