• Duque-Aurazo Yohonatan A. Laboratorio General de Biotecnología, Vicerrectorado de Investigación (UNPRG), Atahualpa 423, Lambayeque (Perú)
  • Rojas-Idrogo Consuelo 1 Laboratorio de Cultivo de Tejidos Vegetales y Recursos Genéticos, Facultad de Ciencias Biológicas, Universidad Nacional Pedro Ruiz Gallo, Juan XXIII 391-Ciudad Universitaria, Lambayeque (Perú), 2. Laboratorio General de Biotecnología, Vicerrectorado de Investigación (UNPRG), Atahualpa 423, Lambayeque (Perú)
  • Delgado-Paredes Guillermo E. 1 Laboratorio de Cultivo de Tejidos Vegetales y Recursos Genéticos, Facultad de Ciencias Biológicas, Universidad Nacional Pedro Ruiz Gallo, Juan XXIII 391-Ciudad Universitaria, Lambayeque (Perú), 2. Laboratorio General de Biotecnología, Vicerrectorado de Investigación (UNPRG), Atahualpa 423, Lambayeque (Perú)



Callus Induction, Micropropagation, Nodal Segments, Rooting, Seasonally Dry Forest, Seed Germination


Muntingia calabura L. (Muntingiaceae) is a fast-growing tree native to tropical America, abundant in the seasonally dry forest of the north coast of Peru. Tissue culture is an effective procedure to produce healthy plants, rapid clonal propagation and several morphogenic process. The objective of this study was to formulate an efficient method for micropropagation, morphogenesis callus induction and germplasm conservation of this species. In this study, seeds, shoot-tips and nodal segments of seedlings were used as explants, inducing various morphogenic processes in different combinations of growth regulators and osmoregulatory substances. In vitro seeds germination was 100% up to four months after the ripe fruits were collected and after 12 months the germination rate was 0.0%. The highest elongation of shoot was observed with 0.5 mg L-1 2iP (3.11 cm) although the highest number of shoots formed (18.0 and 16.5) was observed with 0.5 mg/L KIN or TDZ, respectively, after 30 days of culture. The best callus induction was obtained in  0.5 and 1.0 mg L-1 TDZ, 1.0 and 2.0 mg L-1 2,4-D, 2.0 mg L-1 NAA or 2.0 mg L-1 NAA with 0.1 and 0.5 mg L-1 BAP, after 45 days of culture period. Shoot regeneration (> 10 shoots/explant) was observed with 0.1 to 2.0 mg L-1 NAA. Root induction was observed in all shoots cultured in various concentrations of IBA and NAA-GA3, after 30 days of culture. After two months, well rooted plantlets were transplanted in greenhouse conditions, however, the survival rate was less than 10%. Only in treatment with mannitol 2.0% in explants without roots, the highest in vitro conservation rate (50%) was reached, after 6 months of culture, while in the control treatment in culture medium without ABA and mannitol, but supplemented with 0.02-0.02 mg L-1 (IAA-GA3), the conservation rate reached 100%. The results demonstrated the applicability of tissue culture in the micropropagation and in vitro germplasm conservation of M. calabura.



Download data is not yet available.


Soukup, J. (1970): Vocabulario de los nombres vulgares de la flora peruana. Colegio Salesiano, Lima. 384 p.

Mahmood, N. D., Nasir, N. L. M., Rofiee, M. S., Tohid, S. F. M., Ching, S. M., Teh, L-K., Salleh, M. S. and Zakaria, Z. A, (2014): Muntingia calabura: A review of its traditional uses, chemical properties, and pharmacological observations. Pharmaceutical Biology, 52: 1598-1623. DOI:

Cronquist, A. (1988): The evolution and classification of flowering plants. New York Botanical Garden. 555 p.

Angiosperm Phylogeny Group III (APG III). (2009): An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants. Botanical Journal of Linnean Society, 16: 105-121. DOI:

Zakaria, Z. A., Hassan, M. H., Nor Hazalin, N. A. M. and Ghani, A. A. (2007): Effects of various nanopioid receptor antagonist on the antinociceptive activity of Muntingia calabura extracts in mice. Methods and Findings in Experimental and Clinical Pharmacology, 29: 515-520. DOI:

Correa, M. P. (1978): Dicionário das Plantas Úteis do Brasil e das Exóticas Cultivadas. Imprensa Nacional, Rio de Janeiro, v.III.

Kaneda, N., Pezzuto, J. N., Soejarto, D. D., Kinghorm, A. D., Famsworth, N. R., Santisuk, T., Tuchinda, P., Udchachon, J. and Reutrakul, V. (1991): Plant anticancer agents: XLVIII. New cytotoxic flavonoids from Muntingia calabura roots. Jounal of Natural Products, 54: 196-206. DOI:

Yasunaka, K., Abe, F., Nagayama, A., Okabe, H., Lozada-Pérez, L., López-Villafranco, E., Muñiz, E. E. and Reyes-Chilpa, R. (2005): Antibacterial activity of crude extracts from Mexican medicinal plants and purified coumarins and xanthones. Journal of Ethnopharmacology, 97: 293-299. DOI:

Zakaria, Z. A., Fatimah, C. A., Mat Jais, A. M., Zaiton, H., Henie, E. F. P., Sulaiman, M. R., Somchit, M. N., Thenamutha, M. and Kasthuri, D. (2006): The in vitro antibacterial activity of Muntingia calabura extracts. International Journal of Pharmacology, 2: 439-442. DOI:

Zakaria, Z. A., Sufian, A. S., Ramasamy, H., Ahmat, N., Sulaiman, M. R., Arifah, A. K., Zuraini A, and Somchit, M. N. (2010): In vitro antimicrobial activity of Muntingia calabura extracts and fractions. African Journal of Microbiology Research, 4: 304-308.

Ramos, S. C. S., de Oliveira, J. C. S., da Câmara, C. A. G., Castelar, I., Carvalho, A. F. F. U. and Lima-Filho, J. V. (2009): Antibacterial and cytotoxic properties of some plant crude extracts used in Northeastern folk medicine. Brazilian Journal of Pharmacognosy, 19(2A): 376-381. DOI:

Sibi, G., Naveen, R., Dhananjaya, K., Ravikumar, K. R. and Mallesha, H. (2012): Potential use of Muntingia calabura L. extracts against human and plant pathogens. Pharmacognosy Journal, 4: 44-47. DOI:

Rajesh, R., Jaivel N. and Marimuthu, P. (2014): Muntingia calabura botanical formulation for enhance disease resistance in tomato plants against Alternaria solani. African Jounal of Microbiology Research, 8: 2059-2068. DOI:

Singh, R., Prasad, I. S., Deshmukh, N., Gupta, U., Zanje, A., Patil, S. and Joshi, S. (2017): Phytochemical analysis of Muntingia calabura extracts possessing anti-microbial and anti-fouling activities. International Journal of Pharmacognosy and Phytochemical Research, 9: 826-832.

Su, B. N., Park, E. J., Vigo, J. E., Graham, J., Cabieses, F., Fong, H., Pezzuto, J. and Kinghorn, A. (2003): Activity-guided isolation of the chemical constituents of Muntingia calabura using a quinine reductase induction assay. Phytochemistry, 63: 335-341. DOI:

Chen, J-J., Lin, R-W., Duh, C-Y. and Chen, I-S. (20049: Flavones and cytotoxic constituents from the stem bark of Muntingia calabura. Journal of the Chinese Chemical Society, 51: 665-670. DOI:

Chen, J. J., Lee, H. H., Duh, C. Y. and Chen, I. S. (2005): Cytotoxic chalcones and flavonoids from the leaves of Muntingia calabura. Planta Medica, 71: 970-973. DOI:

Chen, J. J., Lee, H. H., Shih, C. D., Liao, C. H., Chen, I. S. and Chou, T. H. (2007): New dihydrochalcones and anti-platelet aggregation constituents from the leaves of Muntingia calabura. Planta Medica, 73: 572-577. DOI:

Balakrishnan, K. P., Narayanaswamy, N. and Duraisamy, A. (2011): Tyrosinase inhibition and anti-oxidant properties of Muntingia calabura extracts: in vitro studies. International Journal of Pharma and Bio Sciences, 2: 294-303.

Cruiz, W. P., Orejudos, R. and Martin-Puzon, J. J. (2017): Chromatographic fingerprinting and free-radical scavenging activity of ethanol extracts of Muntingia calabura L. leaves and stems. Asian Pacific Journal of Tropical Biomedicine, 7: 139-143. DOI:

Bandeira, G. N., Gomes da Camara, A., de Moraes, M. M., Barros, R., Muhammad, S. and Akhtar, Y. (2013): Insecticidal activity of M. calabura extracts against larvae and pupae of diamondback, Plutella xylostella (Lepidoptera, Plutellidae). Journal of King Saud University – Science, 25: 83-89. DOI:

Rout, G. R., Samantaray, S. and Das, P. (1996): In vitro somatic embryogenesis and plantlet regeneration in callus culture of Muntingia calabura L. Plant Tissue Culture, 6: 15-24.

Pierine, F. R., Gianini, P. F., and Pedroso-de-Moraes, C. (2019): Germinação e crescimento de plântulas in vitro de Muntingia calabura L. (Muntingaceae) submetida a diferentes meios de cultivo. Iheringia, Série Botânica, 74: e2019002.

Murashige, T. and Skoog, F. (1962): A revised medium for rapid growth and bioassays of tobacco cultures. Physiologia Plantarum, 15: 473-497. DOI:

Obroucheva, N., Sinkevich, I,. and Lityagina S. (2016): Physiological aspects of seed recalcitrance: a case study on the tree Aesculus hippocastanum. Tree Physiology, 36: 1127-1150. DOI:

Deberg, P. C. and Reed, P. E. (1991): Micropropagation. In: Debergh, P. C. and Zimmerman, R. H. (eds.) Micropropagation Technology and Application. Kluwer Academic Publishers, Dordrecht, pp. 1-14.

Lopes, J. C., Pereira, M. D. and Martins-Filho, S. (2002): Germinação de sementes de calabura (Muntingia calabura L.) Revista Brasileira de Sementes, 24: 59-66.

Kamada-Nobusada, T. and Sakakibara, H. (2009): Molecular basis for cytokinins biosynthesis. Phytochemistry 70:444-449. DOI:

van Staden, J., Zazimalova, E. and George, E. F. (2008): Plant growth regulators II: cytokinins, their analogues and antagonists. In: George EF, Hall M, De Kerk GJ (eds). Plant Propagation by Tissue Culture. Springer, Dordrecht. Pp. 205-226.

Martínez, M. T., Corredoira, E., Vieitez, A. M., Cernadas, M. J., Montenegro, R., Ballester, A., Vieitez, F. J. and San José, M. C. (2017): Micropropagation of mature Quercus ilex L. trees by axillary budding. Plant Cell, Tissue and Organ Culture, 131: 499-512. DOI:

Hassan, M. M. (2017): Improvement of in vitro plantlet acclimatization rate with kinetin and Hoagland solution. In: Al-Khayri, J. M., Jain, S. M. and Johnson, D. V. (eds.). Date Palm Biotechnology Protocols. Vol. I. Tissue Culture Applications. Springer, New York. pp. 185-200. DOI:

Zhao, H. Q., He, Q. H., Song, L. L., Hou, M. F. and Zhang, Z. G. (2017): In vitro culture of Heuchera villosa ‘Caramel’. HortScience, 52: 622-624. DOI:

Akasaka, Y., Daimon, H. and Mii, M. (2000): Improved plant regeneration from cultured leaf segments in peanut (Arachis hypogaea L.) by limited exposure to thidiazuron. Plant Science, 156: 169-175. DOI:

Gharari, Z., Bagheri, K., Sharafi, A. and Danafar, H. (2019): Thidiazuron induced efficient in vitro organogénesis and regeneration of Scutellaria bornmuelleri: an important medicinal plant. In Vitro Cellular & Developmental Biology-Plant, 55: 133-138. DOI:

Fehér, A. (2015): Somatic embryogensesis–stress-induced remodeling of plant cell fate. Biochimica et Biophysica Acta BBA-Gene Regulatory Mechanisms, 1849: 385-402. DOI:

Garcia, C., Furtado de Almeida, A-A., Costa, M., Britto, D., Valle, R., Royaert, S. and Marelli, J-P. (2019): Abnormalities in somatic embryogenesis caused by 2,4-D: an overview. Plant Cell, Tissue and Organ Culture, 137: 193-212. DOI:

Krishna, H., Alizadeh, M., Singh, D., Singh, U., Chauhan, N., Eftekhari, M. and Sadh, R. K. (2016): Somaclonal variations and their applications in horticultural crops improvement. 3 Biotech, 6: 54. DOI:

Abd El-Kader, E. M. A., Serag, A., Aref, M. S., Ewais, E. E. A. and Farag, M. A. (2019): Metabolomics reveals ionones upregulation in MeJA elicited Cinnamomun camphora (camphor tree) cell culture. Plant Cell, Tissue and Organ Culture, 137: 309-318. DOI:

Duan, Y., Su, Y., Chao, E., Zhang, G., Zhao, F., Xue, T., Sheng, W., Teng, J. and Xue, J. (2019): Callus-mediated plant regeneration in Isodon amethystoides using young seedling leaves as starting materials. Plant Cell, Tissue and Organ Culture, 136: 247-253. DOI:

Kumar, R. R., Purohit, V.K., Prasad, P. and Nautiyal, A. R. (2018): Efficient in vitro propagation protocol of Swertia chirayita (Roxb. Ex Fleming) Kasrsten: A critically endangered medicinal plant. National Academic Science Letters, 4: 123-127. DOI:

Lakshmi, S. R., Parthibhan, S., Sherif, N.A., Kumar, T. S. and Rao, M. V. (2017): Micropropagation, in vitro flowering, and tuberization in Brachystelma glabrum Hook.f., an endemic species. In Vitro Cellular & Developmental Biology-Plant, 53: 64-72. DOI:

Paliwal, A., Shekhawat, N. S. and Dagla, H. R. (2019): Micropropagation of Glossonema varians (Stocks) Benth. ex Hook.f.–a rare Asclepiadaceae of Indian Thar Desert. In Vitro Cellular & Developmental Biology-Plant, 54: 637-641. DOI:

Engelmann, F. (1991): In vitro conservation of tropical plant germplasm – a review. Euphytica 57: 227-243. DOI:

Cha-um, S. and Kirdmanee, C. (2007): Minimal growth in vitro culture for preservation of plant species. Fruit, Vegetable and Cereal Science and Biotechnology, 1: 13-25.

Roberts, E. H. (1973): Predicting the viability of seeds. Seed Science and Technology 1: 499-514.

Shibli, R. D., Shatnawi, M. A., Subaih, W. S., Viera, R. F. and Ajlouni, M. M. (2006): In vitro conservation and cryopreservation of plant genetic resources: A review. World Journal of Agricultural Science, 2: 372-382.

Staritsky, G., Dekkers, A. J., Louwaars, N. P. and Zandvoort, E. A. (1985). In vitro conservation of aroid germplasm at reduced temperatures and under osmotic stress. In: Withers, L. A. and Alderson, P. G. (Eds.). Plant Tissue Culture and its Agricultural Applications. Butterworths. Pp. 277-284.

Espinoza, N., Estrada, R., Tovar, P., Bryan, J. and Dodds, J. H. (1985): Tissue culture micropropagation, conservation and export of potato germplasm. Specialized Technology Document 1. International Potato Center, Lima, Peru. 20 pp.

Roca, W. M., Rodríguez, J., Beltran, J., Roa, J., and Mafla, G. (1982): Tissue culture for the conservation and international exchange of germplasm. In: Fujiwara, A. (Ed.). Proc, 5th Intl. Cong. Plant Tissue and Cell Culture, Tokyo. Pp.771-772.

El-Bahr, M. K., El-Hamid, A. A., Matter, M. A., Shaltout, A., Bekheet, S. A. and El-Ashry, A. A. (2016): In vitro conservation of embryogenic cultures of date palm using osmotic mediated growth agents. Journal of Genetic Engineering and Biotechnolology, 14: 363-370. DOI:

Camillo, J. and Scherwinski-Pereira, J. E. (2015): In vitro maintenance, under slow-growth conditions, of oil plan germplasm obtained by embryo rescue. Pesquisa Agropecuaria Brasileira 50: 426-429. DOI:

Rayas, A., López, J., Medero, V. R., Basail, M., Santos, A. and Gutiérrez, Y. (2019): Conservación in vitro de cultivares de Ipomoea batatas (L.) Lam por crecimiento mínimo con el uso de manitol. Biotecnología Vegetal, 19: 43-51.

Renau-Morata, B., Arrillaga, I. and Segura, I. (2006): In vitro storage of cedar shoot cultures under minimal growth conditions. Plant Cell Reports, 25: 636-642. DOI:

Huang, H-P., Wang, J., Huang, L-Q., Gao, S-L., Huang, P. and Wang, D-L. (2014): Germplasm preservation in vitro of Polygonum multiflorum Thunb. Pharmacognosy Magazine, 10: 179-184. DOI:

da Silva, T. L. and Scherwinski-Pereira, J. E. (2011): In vitro conservation of Piper aduncum and Piper hispidinervum under slow-growth conditions. Pesquisa Agropecuaria Brasileira, 46: 384-389. DOI:




How to Cite