ELECTRONIC, STRUCTURAL AND PHARMACOCINETIC CHARACTERIZATION OF TRICYCLIC ALKALOID ALTERNAMIDE A: A SEMI-EMPIRICAL QUANTUM STUDY AND ADMET

Authors

  • Sandy Pereira Estácio Chemistry Department, State University of Ceará, Brazil
  • Francisco Rogênio Da Silva Mendes Chemistry Department, State University of Ceará, Brazil
  • Emanuelle Machado Marinho Chemistry Department, Federal University of Ceará, Brazil
  • Othon Souto Campos Chemistry Department, Federal University of Espirito Santo, Brazil
  • Márcia Machado Marinho Chemistry Department, Federal University of Ceará, Brazil
  • Emmanuel Silva Marinho Chemistry Department, State University of Ceará, Brazil

DOI:

https://doi.org/10.29121/granthaalayah.v7.i10.2019.417

Keywords:

Alkaloid, Chagas disease, Neglected disease, Quantum study, Semi-empirical, Trypanosoma cruzi

Abstract [English]

Chagas disease is one of the biggest socioeconomic problems in Latin America. Caused by the protozoan parasite Trypanosoma cruzi, affecting 7 million people, causing approximately 14,000 deaths per year. Alternamide, a tricyclic alkaloid present in Alternanthera littoralis, an herbaceous plant found on beaches of the Brazilian its extracts are used in traditional medicine for treatment of infectious and inflammatory diseases, which showed anti Trypanocida activity. In this context, in the present work we present the results of the electronic, structural and pharmacokinetic characterization study of the promising phytopharmaceutical Alternamide A. Using the semi-empirical quantum formalism it was possible to identify the most stable conformation, boundary orbitals, calculate to identify nucleophilic sites and reactivity descriptors. Through in silico absorption, distribution, metabolism, excretion and toxicity (ADMET) simulations, including solubility, blood-brain barrier (BHE), plasma protein binding, CYP2D6 binding, gastrointestinal absorption and hepatotoxicity, it was observed that good oral bioavailability and high-water solubility high gastrointestinal absorption. The synthetic accessibility score was 2.75, which means that it would be easy to synthesize the molecule under study. Highlighting what this study represents is a key step for future molecular docking and drug design studies for the development of inhibitors of the evolutionary forms of the molecule T-crossed.

Downloads

Download data is not yet available.

References

Dias, L.C., Dessoy, M.A., Silva JJN, Thiemann OH, Oliva G, Andricopulo AD. Chemotherapy of Chagas’ disease: State of the art and perspectives for the development of new drugs. Quim Nova. 2009;

Bermudez, J., Davies, C., Simonazzi, A., Pablo Real, J., Palma, S., Current drug therapy and pharmaceutical challenges for Chagas disease. Acta Tropica. 2016. DOI: https://doi.org/10.1016/j.actatropica.2015.12.017

Coura, J.R. Ripanosomose, doença de. E N D E M I a S /a R T I G O S. 1999;

De Oliveira Filho, G..B, Cardoso, M.V., Espíndola, J.W..P, Oliveira e Silva, D.A, Ferreira, R.S., Coelho, P.L., et al. Structural design, synthesis and pharmacological evaluation of thiazoles against Trypanosoma cruzi. Eur J Med Chem. 2017; DOI: https://doi.org/10.1016/j.ejmech.2017.09.047

Repetto, E.C., Zachariah, R., Kumar, A., Angheben, A., Gobbi, F., Anselmi, M., et al. Neglect of a Neglected Disease in Italy: The Challenge of Access-to-Care for Chagas Disease in Bergamo Area. PLoS Negl Trop Dis. 2015; DOI: https://doi.org/10.1371/journal.pntd.0004103

Moncayo,A., Silveira, A.C. Current epidemiological trends of Chagas disease in Latin America and future challenges: Epidemiology, surveillance, and health policies. In: American Trypanosomiasis Chagas Disease: One Hundred Years of Research: Second Edition. 2017. DOI: https://doi.org/10.1016/B978-0-12-801029-7.00004-6

De Menezes, R.P.B., Sampaio, T.L., Lima, D.B., Sousa, P.L., De Azevedo, I.E.P., Magalhães, E.P., et al. Antiparasitic effect of (−)-α-bisabolol against Trypanosoma cruzi Y strain forms. Diagn Microbiol Infect Dis [Internet]. 2019:114860. Available from: https://doi.org/10.1016/j.diagmicrobio.2019.06.012 DOI: https://doi.org/10.1016/j.diagmicrobio.2019.06.012

Koolen, H.H.F., Pral, E.M.F., Alfieri, S.C., Marinho, J.V.N., Serain, A.F., Hernández-Tasco, A.J.,. Antiprotozoal and antioxidant alkaloids from Alternanthera littoralis. Phytochemistry. 2017; DOI: https://doi.org/10.1016/j.phytochem.2016.11.008

Lima, A.R., Silva, J., Bezerra, L.L., Marinho, M.M., Marinho, E.S. Molecular docking of potential curcuminoids inhibitors of the NS1 protein of dengue virus. Int J Sci Eng Res. 2017;8(4).

Carneiro, S.S., Lima, A.R., Marinho, M.M., Marinho, E.S. In silico Study Of The Therapeutic Agent In The Treatment Of Non-Hodgkin’ s Lymphomas, Peripheral T- Cell Belinostat , A Semi-Empirical Approach. Imp J Interdiscip Res. 2016;(8):1645–8.

Oliveira, V.M. De, Marinho, M.M., Marinho, E.S., Semi-Empirical Quantum Characterization of the Drug Selexipag: HOMO and LUMO and Reactivity Descriptors. Int J Recent Res Rev. 2019; XII (2):15–20.

Henrique, C., Roberto, A., Marinho, E.S., Campos, O.S., Nithael,. F, Lucio M, Characterization of the natural insecticide methylcytisine: An in silico study using classic force field. Int J Recent Res Rev. 2019; XII (2):15–20.

Cheng, F., Li, W., Zhou, Y., Shen, J., Wu, Z., Liu, G., et al. AdmetSAR: A comprehensive source and free tool for assessment of chemical ADMET properties. J Chem Inf Model. 2012; DOI: https://doi.org/10.1021/ci300367a

Tareq-Hassan Khan, M. Predictions of the ADMET Properties of Candidate Drug Molecules Utilizing Different QSAR/QSPR Modelling Approaches. Curr Drug Metab. 2010; DOI: https://doi.org/10.2174/138920010791514306

Chinthala, Y., Thakur, S., Tirunagari, S., Chinde, S., Domatti, A.K., Arigari, N.K., et al. Synthesis, docking and ADMET studies of novel chalcone triazoles for anti-cancer and anti-diabetic activity. Eur J Med Chem. 2015; DOI: https://doi.org/10.1016/j.ejmech.2015.02.027

Atkins,. P, De Paula, J. Atkins’ physical chemistry / Peter Atkins, Julio de Paula. Physical chemistry. 2010.

Lopes, D.,Oliveira, S. De, Marinho, M.M., Marinho, E. S., Butanamide. Characterization in Silic of Anti-Epiletic Drug ( 2S ) -2- [( 4R ) -2- O--propylpyrrolidin--yl,. 2018; XI(4):5–12.

Csizmadia, P. MarvinSketch and MarvinView: Molecule Applets for the World Wide Web. In 2019.

Thompson, M.A., ArgusLab 401. Planaria Software LLC, Seattle, WA. ArgusLab 4.0. 1. Seattle; 2010.

Thompson, J.D., Cramer, C.J., Truhlar, D.G. Parameterization of charge model 3 for AM1, PM3, BLYP, and B3LYP. J Comput Chem. 2003; DOI: https://doi.org/10.1002/jcc.10244

Hanwell, M.D., Curtis, D.E., Lonie, D.C., Vandermeerschd, T., Zurek, E., Hutchison, G.R. Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. J Cheminform. 2012; DOI: https://doi.org/10.1186/1758-2946-4-17

Reges, M., Marinho, M.M., Marinho, E.S. Semi-Empirical Study of the Drug Riociguat , an Important Drug for Oral Treatment against Chronic Thromboembolic Pulmonary Hypertension. Int J Sci Eng Sci. 2017;1(1):13–7.

Araujo, G.A, Silva, E.P., Sanabio, R.G., Pinheiro, J.A., Albuquerque, M.B., Castro, R.R., et al. Characterization in Silico of the Structural Parameters of the Antifungal Agent Ketoconazole. Biol Chem Res. 2016;

Paes, L., Santos, W.L., Marinho, M.M., Marinho, E.S. ESTUDO DFT DO ALCALOIDE DICENTRINA: GAP, HOMO, LUMO, MESP E MULLIKEN. JOIN. 2017;(1).

Prabavathi, N., Nilufer, A., Krishnakumar, V. Molecular structure, vibrational, UV, NMR, hyperpolarizability, NBO and HOMO-LUMO analysis of Pteridine2,4-dione. Spectrochim Acta - Part A Mol Biomol Spectrosc. 2012; DOI: https://doi.org/10.1016/j.saa.2012.09.003

Mulliken, R.S. Electronic population analysis on LCAO-MO molecular wave functions. I. J Chem Phys. 1955; DOI: https://doi.org/10.1063/1.1740588

Atkins, P.W, Overton, T., Rourke, J., Weller, M., Armstrong, F., Hagerman, M. Shriver & Atkins’ Inorganic Chemistry. Shriver and Atkin’s inorganic chemistry. 2010.

Gopakumar, T.G., Meiss, J., Pouladsaz, D., Hietschold, M. HOMO-LUMO gap shrinking reveals tip-induced polarization of molecules in ultrathin layers: Tip-sample distance-dependent scanning tunneling spectroscopy on d8 (Ni, Pd, and Pt) phthalocyanines. J Phys Chem C. 2008; DOI: https://doi.org/10.1021/jp0771567

Suresh, Kumar. S., Athimoolam, S., Sridhar, B. XRD, vibrational spectra and quantum chemical studies of an anticancer drug: 6-Mercaptopurine. Spectrochim Acta - Part A Mol Biomol Spectrosc. 2015; DOI: https://doi.org/10.1016/j.saa.2015.02.104

Koopmans, T. Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den Einzelnen Elektronen Eines Atoms. Physica. 1934; DOI: https://doi.org/10.1016/S0031-8914(34)90011-2

Vijayaraj, R., Subramanian, V., Chattaraj. P.K. Comparison of global reactivity descriptors calculated using various density functionals: A QSAR perspective. J Chem Theory Comput. 2009; DOI: https://doi.org/10.1021/ct900347f

Chermette, H. Chemical reactivity indexes in density functional theory. J Comput Chem. 1999; DOI: https://doi.org/10.1002/(SICI)1096-987X(19990115)20:1<129::AID-JCC13>3.0.CO;2-A

Padmanabhan, J., Parthasarathi, R., Subramanian, V., Chattaraj, P.K. Electrophilicity-based charge transfer descriptor. J Phys Chem A. 2007; DOI: https://doi.org/10.1021/jp0649549

Chattaraj, P.K., Sarkar, U. Theoretical Aspects of Chemical Reactivity. Theoretical and Computational Chemistry. 2007.

Parr, R.G., Pearson RG. Absolute hardness: companion parameter to absolute electronegativity. J Am Chem Soc [Internet]. 1983 Dec;105(26):7512–6. Available from: http://pubs.acs.org/doi/abs/10.1021/ja00364a005 DOI: https://doi.org/10.1021/ja00364a005

Parr, R.G., Chattaraj, P.K. Principle of Maximum Hardness. J Am Chem Soc. 1991; DOI: https://doi.org/10.1021/ja00005a072

Lee, C., Yang, W., Parr, R.G. Into a Functional of the Electron Density F F. Phys Rev B. 1988;

Okoli, P.T, Nzute, V.C, Durojaye, O.A., Chielo, O.H., Ajibo, Q.C., Udo, S.I., et al. An In-silico Pharmacokinetics Study on Cis- A Nutraceutical Compound with Anticancer Properties. 2019;7(3):1–7.

Silva, A.B.F, Marinho M.M., Mendes F.R.D.S. In Silico Study of Phytochemical Chlorogenic Acid: A Semi- Empirical Quantum Study and Adme. Int J Recent Res Rev. 2019; XII (2):34–9.

Daina, A., Michielin, O., Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep. 2017; DOI: https://doi.org/10.1038/srep42717

Wildman, S.A, Crippen, G.M. Prediction of physicochemical parameters by atomic contributions. J Chem Inf Comput Sci. 1999; DOI: https://doi.org/10.1021/ci990307l

Lipinski, C.A, Lombardo, .F, Dominy, B.W., Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews. 2012. DOI: https://doi.org/10.1016/j.addr.2012.09.019

Waring, M.J. Defining optimum lipophilicity and molecular weight ranges for drug candidates-Molecular weight dependent lower log D limits based on permeability. Bioorganic Med Chem Lett. 2009; DOI: https://doi.org/10.1016/j.bmcl.2009.03.109

Lewars, E.G. Computational chemistry: Introduction to the theory and applications of molecular and quantum mechanics: Third Edition 2016. Computational Chemistry: Introduction to the Theory and Applications of Molecular and Quantum Mechanics: Third Edition 2016. 2016.

Marinho, E.S. Utilização Do Método Semi-Empírico Pm7 Para Caracterização Do Fármaco Atalureno : Homo ,. Rev Expressão Católica. 2016;1(1):177–84. DOI: https://doi.org/10.25191/recs.v1i1.1393

Atkins, P., Paula, J. de, Friedman, R.. Quanta, Matter, and Change: A molecular approach to physical chemistry. New York. 2009;

Atkins, P., Friedman, R., Molecular Quantum Mechanics Fourth Edition. Oxford Univ Press New York. 2005;

Eryilmaz, S., Gül, M., Inkaya, E., Taş, M. Isoxazole derivatives of alpha-pinene isomers: Synthesis, crystal structure, spectroscopic characterization (FT-IR/NMR/GC-MS) and DFT studies. J Mol Struct. 2016; DOI: https://doi.org/10.1016/j.molstruc.2015.11.079

Morgon, N.H., Custodio, R., Custódio, R., Morgan, N. H. and Custódio, R. Teoria do Funcional da Densidade. Quim Nov [Internet]. 1995;18(1):44. Available from: http://quimicanova.sbq.org.br/qn/qnol/1995/vol18n1/v18_n1_10.pdf

Reges, M., Marinho, M.M., Marinho, E.S. Structural Characterization of the Hypoglycemic Drug Glimepiride. Int J Recent Res Rev. 2018; XI (2):26–35.

Carneiro, S.S., Marinho, M.M., Marinho, E.S. Electronic / Structural Characterization of Antiparkinsonian Drug Istradefylline : A Semi-Empirical Study. Int J Recent Res Rev. 2017; X (4):9–14.

Marinho ES. A DFT study of synthetic drug topiroxostat: MEP, HOMO, LUMO. Int J Sci Eng Res. 2016;7(July):1264–70.

Eyre, R.J., Goss, J..P, MacLeod, R.M., Briddon, P.R. Stability of singly hydrated silanone on silicon quantum dot surfaces: Density functional simulations. Phys Chem Chem Phys. 2008; DOI: https://doi.org/10.1002/chin.200842001

Mohan, N., Suresh, C.H. A molecular electrostatic potential analysis of hydrogen, halogen, and dihydrogen bonds. J Phys Chem A. 2014; DOI: https://doi.org/10.1021/jp4115699

Lai, T.Y, Guo, J.D., Fettinger, J.C., Nagase, S., Power, P.P. Facile insertion of ethylene into a group 14 element-carbon bond: effects of the HOMO-LUMO energy gap on reactivity. Chem Commun. 2019; DOI: https://doi.org/10.1039/C8CC08488B

Rottschäfer, D., Sharma, M.K., Neumann, B., Stammler, H.G., Andrada, D.M., Ghadwal, R,S. A Modular Access to Divinyldiphosphenes with a Strikingly Small HOMO–LUMO Energy Gap. Chem - A Eur J. 2019; DOI: https://doi.org/10.1002/chem.201901204

AlAbbad, S., Sardot, T., Lekashvili, O., Decato, D., Lelj F., Ross J.B.A., et al. Trans influence and substituent effects on the HOMO-LUMO energy gap and Stokes shift in Ru mono-diimine derivatives. J Mol Struct. 2019; DOI: https://doi.org/10.1016/j.molstruc.2019.06.005

The Theoretical Prediction of Thermophysical properties, HOMO, LUMO, QSAR and Biological Indics of Cannabinoids (CBD) and Tetrahhdrocannabinol (THC) by Computational Chemistry. Adv J Chem A. 2019;

Arroio, A., Honório, K.M., Da Silva, A.B.F. Propriedades químico-quânticas empregadas em estudos das relações estrutura-atividade. Quimica Nova. 2010. DOI: https://doi.org/10.1590/S0100-40422010000300037

Rajan, V.K., Muraleedharan, K. A computational investigation on the structure, global parameters and antioxidant capacity of a polyphenol, Gallic acid. Food Chem [Internet]. 2017;220:93–9. Available from: http://dx.doi.org/10.1016/j.foodchem.2016.09.178 DOI: https://doi.org/10.1016/j.foodchem.2016.09.178

Ferreira, L.L.G, Andricopulo, A.D. ADMET modeling approaches in drug discovery. Drug Discovery Today. 2019. DOI: https://doi.org/10.1016/j.drudis.2019.03.015

Vora, J., Patel, S., Sinha, S., Sharma, S., Srivastava, A., Chhabria, M., et al. Molecular docking, QSAR and ADMET based mining of natural compounds against prime targets of HIV. J Biomol Struct Dyn. 2019; DOI: https://doi.org/10.1080/07391102.2017.1420489

Zapadka, M., Kaczmarek, M., Kupcewicz, B., Dekowski, P., Walkowiak, A., Kokotkiewicz, A., et al. An application of QSRR approach and multiple linear regression method for lipophilicity assessment of flavonoids. J Pharm Biomed Anal. 2019; DOI: https://doi.org/10.1016/j.jpba.2018.11.024

Daina, A., Zoete, V. A BOILED-Egg To Predict Gastrointestinal Absorption and Brain Penetration of Small Molecules. ChemMedChem. 2016; DOI: https://doi.org/10.1002/cmdc.201600182

Singh, G., Satija, P., Singh, B., Sinha, S., Sehgal, R., Sahoo, S.C. Design, crystal structures and sustainable synthesis of family of antipyrine derivatives: Abolish to bacterial and parasitic infection. J Mol Struct. 2020; DOI: https://doi.org/10.1016/j.molstruc.2019.127010

Downloads

Published

2019-10-31

How to Cite

Estácio S. P., Da Silva Mendes, F. R., Marinho, E. M., Campos, O. S., Marinho, M. M., & Marinho, E. S. (2019). ELECTRONIC, STRUCTURAL AND PHARMACOCINETIC CHARACTERIZATION OF TRICYCLIC ALKALOID ALTERNAMIDE A: A SEMI-EMPIRICAL QUANTUM STUDY AND ADMET. International Journal of Research -GRANTHAALAYAH, 7(10), 429–447. https://doi.org/10.29121/granthaalayah.v7.i10.2019.417

Most read articles by the same author(s)