INVESTIGATION OF LOW-TEMPERATURE FLUORESCENCE AND ABSORPTION SPECTRA OF HIGHLY STABLE MERO-CYANINES DERIVATIVES OF 2, 6-DI-TERT-BUTYL-4-[R]-CYCLOHEXA-2, 5-DIENONE

Authors

  • Nataliya Obernikhina Bogomolets National Medical University, Department of Bioorganic and Biological Chemistry, 34 Peremogy Ave., 03055, Kyiv, Ukraine
  • Alexey Kachkovsky Institute of Bioorganic Сhemistry and Petrochemistry NAS of Ukraine, 1 Murmanska str., Kyiv, 02660, Ukraine
  • Viktor Kurdyukov Institute of Organic Chemistry NAS of Ukraine, 5 Murmanska str.; Kyiv, 02660, Ukraine
  • Yuriy Piryatinski Institute of Physics NAS of Ukraine, 46 Nauki Ave., Kyiv, 03039, Ukraine

DOI:

https://doi.org/10.29121/granthaalayah.v5.i12.2017.530

Keywords:

Cyanine Dyes, Electron Structure, Absorption Spectra, Low-Temperature Fluorescence Spectra, Quantum-Chemical Calculations

Abstract [English]

This work presents the results of the investigation of the dependence of the fluorescence and absorption spectra of merocyanines, derivatives of the 2,6-di-tret-butyl-4-[R]-cyclohexa-2,5-dienone, on the nature of donor end groups (pyridinium, quinolinium, pyrilium, benzo[c,d]indolium, benzoimidindolium). Quantum-chemical calculation of the distribution was organized to electronic density and lengths of the relationships, which has shown that introduction tert-butyl groups in nucleus cyclohexa-2,5-dienone practically does not influence upon the general characteristic merocyanines in contrast with hydrogen. The stability merocyanines vastly increases when entering tert-butyl groups in cyclohexa-2,5-dienone. But such three-dementional groups vastly complicate the bands of the absorption, which become broader, have a complex oscillatory structure. So more suitable spectrums turned out to be for interpreting electronic transition to fluorescences, to measure at the temperature of the fluid nitrogen. As it is seen, spectral bands become more structuring with clearly marked by maximum of the transition. Well-defined 0`→ 0 vibronical transition was found at use of the low-temperature fluorescent spectra. Merocyanines with highly stable tert-butyl groups can be used as fluorescence probes and labels in chemistry and biology, active and passive components for tunable dye lasers, highly effective materials for non-linear optic.

Downloads

Download data is not yet available.

References

Reichardt Ch. Solvent effects in organic chemistry. Weinhein: Verlag Chemie; 1979, p.320.

Botrel A., Beuze A., Jaques P., Strub H. (1984) Solvatochromism of a typical merocyanine dye. A theoretical investigation through the CNDO/SCI method including solvation J. Chem. Soc., Faraday Trans. 2 (80) 1235-1252. DOI: 10.1039/F29848001235 DOI: https://doi.org/10.1039/f29848001235

Baraldi I., Momicchioli F., Ponterini G., Vanossi D. (1998) Exciton-like and charge-transfer states in cyanine-oxonol ion pairs. An experimental and theoretical study Chem. Phys., 238, 353-364. DOI: 10.1021/jp004479t DOI: https://doi.org/10.1021/jp004479t

F.Meyers, S.R.Marder, J.W.Perry (1998) Introducing to the Nonlinear Optical Properties of Organic Materials. In: Chemistry of Advanced Materials. An Overreviw. Chapt. 6. Ed. L.V.Interrante, M.J.Hampden-Smith. Wiley-VCH. Inc. New-York-Chicherster-Weinheim-Brisbane-Singapore-Toronto. P.207-268.

Risser S.M., Beratan D.N., Marder S.R. (1993) Structure-function relationships for .beta., the first molecular hyperpolarizability J. Amer. Chem. Soc., 115, 7719-7728. DOI: 10.1021/ja00070a016 DOI: https://doi.org/10.1021/ja00070a016

Pilipchuk N. V., Kachkovsky G. O., Slominskii Yu. L., Kachkovsky O. D. (2006) Electronic properties of polymethine systems. 11. Absorption spectra and nature of electron transitions in cationic oxystyryl and their neutral derivatives. Dyes & Pigments, 71, 1-9. DOI: 10.1016/j.dyepig.2005.04.013 DOI: https://doi.org/10.1016/j.dyepig.2005.04.013

Brooker L.Y.S., Keyes G., Sprague L. H. (1951) Color and Constitution. X. Absorption of the Merocyanines. J. Amer. Chem. Soc., 73, 5332-5350. DOI: 10.1021/ja01155a096 DOI: https://doi.org/10.1021/ja01155a096

Hamer F.M. Cyanine dyes and related compounds. Interscience. New York. 1964

Tyutulkov N., Fabian J., Mehlhorn A., Dietz F., Tatjer A. (1991) Polymethine Dyes. Structure and properties. St. Kliment Ohridski University Press,Sofia.

Kachkovsky O. D., Pilipchuk N. V., Piryatinski Yu. P., Kachkovsky G. O., Slominskii Yu. L. (2007). Low-temperature fluorescence of oxystyryls and some of their neutral derivatives. Dyes & Pigments 73, 353-360. DOI: 10.1016/j.dyepig.2006.01.046 DOI: https://doi.org/10.1016/j.dyepig.2006.01.046

Kachkovsky A.D. (1997) Thе nature of eleсtroniс transitions in linеar сonjugatеd systems. Russ. Chem.Rev. 66, 647-664. DOI: 10.1070/RC1997v066n08ABEH000274 DOI: https://doi.org/10.1070/RC1997v066n08ABEH000274

Gruda I., Bolduc F. (1984) Spectral properties and basicity of stilbazolium betaines containing bulky substituents on the quinoid ring. J. Org. Chem. 49, 3300-3305. DOI: 10.1021/jo00192a010 DOI: https://doi.org/10.1021/jo00192a010

Streitwieser A. (1963) Molecular orbital theory. New York-London: John Wiley and Sons, Inc.

McCoy E.F., Ross I.J. (1962) Electronic States of Aromatic Hydrocarbons: The Franck-Condon Principle and Geometries in Excited States Austral. J. Chem., 15, 573-590. DOI: 10.1071/CH9620573 DOI: https://doi.org/10.1071/CH9620573

Ishchenko, A.A. (1991) Structure and Luminescence-Spectral Characteristics of Polymethine Dyes. Russ. Chem. Rev., 60, 865-880.

M. J. Frisch, G. W. Trucks, H. B. Schlegel, at al, (2003) GAUSSIAN03; revision B.05, Gaussian, Inc., Pittsburgh PA.

Downloads

Published

2017-12-31

How to Cite

Obernikhina, N., Kachkovsky, A., Kurdyukov, V., & Piryatinski, Y. (2017). INVESTIGATION OF LOW-TEMPERATURE FLUORESCENCE AND ABSORPTION SPECTRA OF HIGHLY STABLE MERO-CYANINES DERIVATIVES OF 2, 6-DI-TERT-BUTYL-4-[R]-CYCLOHEXA-2, 5-DIENONE. International Journal of Research -GRANTHAALAYAH, 5(12), 435–451. https://doi.org/10.29121/granthaalayah.v5.i12.2017.530