• Zeeshan Ahmed Project Assistant, Department of microbiology, Central Drug Research Institute, Lucknow, Uttar Pradesh, India
  • Saman Athar Ex student, Department of Zoology, Aligarh Muslim University, Aligarh, Uttar Pradesh, India




Literature Review, Neurotoxicity, Pyrethroids

Abstract [English]

Pyrethroids are synthetic derivations of natural pyrethrins from the factory Chrysanthemum cinerariaefolium. They comprise esters of chrysanthemum acid (ethyl, 2-dimethyl-3-(1-isobutenyl) cyclopropane-1-carboxylate) and halogenated derivations of their acids and alcohols. Pyrethroids are generally used in menage diseases and companion beast ectoparasite control products, and their limited use in the home terrain raises the trouble of exposure and adverse goods in the general population for humans and advanced creatures. Exploration with a wide range of pyrethroids has indicated that the choreothetosis-expectoration (CS) pattern frequently occurs as substances like deltamethrin, cypermethrin, and fenvalerate, which have the mode T- cyano-3-phenoxybenzylalcohol. General, extensively used bracket of Pyrethroid composites are determined grounded upon the symptomology of nonentity goods noted in neurophysiological tests. Numerous lines of substantiation indicate that the voltage sensitive sodium channel for both insects is the one main molecular destination for all pyrethroids and DDT analogues. In biophysical and biochemical examinations, the changes in sodium channel functioning are nearly connected to the impact of these substances on complete neurons. The pyrethroid sodium channel discovery point demonstrates the strict stereo particularity anticipated by in vivo nonentity neurotoxicity estimates. Composites of type I and type II have qualitative goods on currents of the sodium channel tail, divergent impact on complete neurons and differing goods on muscle excitability of the invertebrate shell. Knowledge of the molecular events bolstering pyrethroid neurotoxicity is directly applicable to determining whether this large and important class of diseases constitutes a single “common medium” group or multiple groups for the purposes of cumulative trouble assessment.


Download data is not yet available.


Abalis, I. M., Eldefrawi, M. E., and Eldefrawi, A. T. (1983). Biochemical identification of putative GABA/benzodiazepine receptors in house flythorax muscles. Pesticide Biochemistry and Physiology, 20(1), 39-48. https://doi.org/10.1016/0048-3575(83)90119-0

Abbassy, M. A., Eldefrawi, M. E., and Eldefrawi, A. T. (1982). Allethrin interactions with the nicotinic acetylcholine receptor channel. Life Sciences, 31(15), 1547-1552. https://doi.org/10.1016/0024-3205(82)90045-5

Barthel, W. F. (1961). Synthetic pyrethroids. Advan. Pest control res, 4, 33.

Beeman, R. W. (1982). Recent advances in mode of action of insecticides. Annual Review of Entomology, 27, 253-281. https://doi.org/10.1146/annurev.en.27.010182.001345

Bloomquist, J. R., Adams, P. M., and Soderlund, D. M. (1986). Inhibition of 3,-aminobutyriacc id-stimulated chloride flux in mousbe rain vesicle by polychlorocycloalkane and pyrethroid insecticides. NeuroToxicology, 7(3), 11-20. https://pubmed.ncbi.nlm.nih.gov/2434890/

Bloomquist, J. R., and Soderlund, D. M. (1985). Neurotoxic insecticides inhibit GABA-dependent chloride uptake by mouse brain vesicles. Biochemical and Biophysical Research Communications, 133(1), 37-43. https://doi.org/10.1016/0006-291x(85)91838-8

Bradberry, S. M., Cage, S. A., Proudfoot, A. T., and V. J. A. (2005). Poisoning due to pyrethroids. Toxicology Research, 24, 93-106. https://doi.org/10.2165/00139709-200524020-00003

Burridge, L. E., and H. K. (1997). Lethality of pyrethrins to larvae and postlarvae of the American lobster (Homarus americanus). Ecotoxicology and Environment Safety, 38, 150-154. https://doi.org/10.1006/eesa.1997.1571

Burridge, L. E., and Haya, K. (1997). Lethality of pyrethrins to larvae and postlarvae of the American lobster (Homarus americanus). Ecotoxicology and Environmental Safety, 38(2), 150-154. https://doi.org/10.1006/eesa.1997.1571

Busvine, J. R. (1951). Mechanism of resistance to insecticide in houseflies. Nature, 168(4266), 193-195. https://doi.org/10.1038/168193a0

Chang, F., Dutta, S., Becnel, J. J., Estep, A. S., and Mascal, M. (2014). Synthesis of the insecticide prothrin and its analogues from biomass-derived 5-(chloromethyl) furfural. Journal of Agricultural and Food Chemistry, 62(2), 476-480. https://doi.org/10.1021/jf4045843

Chrustek, A., Hołyńska-Iwan, I., Dziembowska, I., Bogusiewicz, J., Wróblewski, M., Cwynar, A., and Olszewska-Słonina, D. (2018). Current research on the safety of pyrethroids used as insecticides. Medicina, 54(4). https://doi.org/10.3390/medicina54040061

Clark, J. M., and Matsumura, F. (1982). Two different types of inhibitory effects of pyrethroids on nerve Ca- and Ca + Mg-ATPase activity in the squid, Loligo pealei. Pesticide Biochemistry and Physiology, 18(2), 180-190. https://doi.org/10.1016/0048-3575(82)90104-3

Clark, J. M., and Matsumura, F. (1987). The actin of two classes of pyrethroids on the inhibition of brain Na-Ca and Ca + Mg ATP hydrolyzing activities of the American cockroach. Comp. Biochemistry and Physiology, 86, 13545. https://doi.org/10.1016/0742-8413(87)90156-3

Clements, A. N., and May, T. E. (1977). The actions of pyrethroids upon the peripheral nervous system and associated organs in the locust. Pesticide Science, 8(6), 661-680. https://doi.org/10.1002/ps.2780080611

Costa, L. G. (2015). The neurotoxicity of organochlorine and pyrethroid pesticides. Handbook of Clinical Neurology, 131, 135-148. https://doi.org/10.1016/B978-0-444-62627-1.00009-3

Cárcamo, J. G., Aguilar, M. N., Carreño, C. F., Vera, T., Arias-Darraz, L., Figueroa, J. E., Romero, A. P., Alvarez, M., and Yañez, A. J. (2017). Consecutive emamectin benzoate and deltamethrin treatments affect the expressions and activities of detoxification enzymes in the rainbow trout (Oncorhynchus mykiss). Comparative Biochemistry and Physiology. Toxicology and Pharmacology, 191, 129-137. https://doi.org/10.1016/j.cbpc.2016.10.004

Davies, M., Keiding, J., and Von Hosten, C. G. (1958). Resistance to pyrethrins and to pyrethrinspiperonyl butoxide in a wild strain of Musca domestica L. in Sweden. Nature, 182(4652), 1816-1817. https://doi.org/10.1038/1821816a0

Davies, T. G. E., Field, L. M., Usherwood, P. N. R., and Williamson, M. S. (2007). DDT, pyrethrins, pyrethroids and insect sodium channels. IUBMB Life, 59(3), 151-162. https://doi.org/10.1080/15216540701352042

Del Prado-Lu, J. L. (2015). D.P.-L. Environmental Health and Preventive Medicine, 20(1), 53-62. https://doi.org/10.1007/s12199-014-0425-3

Devaud, L. L., Szot, P., and Murray, T. F. (1986). PK 11195 antagonism of pyrethroid-induced proconvulsant activity. European Journal of Pharmacology, 121(2), 269-273. https://doi.org/10.1016/0014-2999(86)90499-1

Devaud, L., and Murray, T. F. (1987). Interactions of pyrethroid insecticides with the peripheral-type bcnzodiazepine receptor. Social Neuroscience [Abstr.], 13, 1230.

Dong, K. (1997). A single amino acid change in the para sodium channel protein is associated with knockdown-resistance (kdr) to pyrethroid insecticides in German cockroach. Insect Biochemistry and Molecular Biology, 27(2), 93-100. https://doi.org/10.1016/s0965-1748(96)00082-3

Dong, K. (2007). Insect sodium channels and insecticide resistance. Invertebrate Neuroscience, 7(1), 17-30. https://doi.org/10.1007/s10158-006-0036-9

Dong, K., and Scott, J. G. (1994). Linkage of kdr-type resistance and the para-homologous sodium channel gene in German cockroaches (Blattella germanica). Insect Biochemistry and Molecular Biology, 24(7), 647-654. https://doi.org/10.1016/0965-1748(94)90051-5

Eldefrawi, M. E., Sherby, S. M., Abalis, I. M., and Eldefrawi, A. T. (1985). Interactions of pyrethroid and cyclodiene insecticides with nicotinic acetycholine and GABA receptors. NeuroToxicology, 6(2), 47-62. https://pubmed.ncbi.nlm.nih.gov/2410832/

Elliott, M. (1971). The relationship between the structure and the activity of pyrethroids. Bulletin of the World Health Organization, 44(1-3), 315-324. https://pubmed.ncbi.nlm.nih.gov/4938024/

Elliott, M. (1976). Properties and applications of pyrethroids. Environmental Health Perspectives, 14, 3-13. https://doi.org/10.2307/3428357

Fales, J. H. et al. (1972). Relative effectiveness of pyrethroid insecticides. Soap, Cosmetics, Chemical Specialties, 48, 60.

Frank, D. F., Miller, G. W., Harvey, D. J., Brander, S. M., Geist, J., Connon, R. E., and Lein, P. J. (2018). Bifenthrin causes transcriptomic alterations in mTOR and ryanodine receptor-dependent signaling and delayed hyperactivity in developing zebrafish (Danio rerio). Aquatic Toxicology, 200, 50-61. https://doi.org/10.1016/j.aquatox.2018.04.003

Gammon, D. W., Brown, M. A., and Casida, J. E. (1981). Two classes of pyrethroid action in the cockroach.Biochern. Pesticide Biochemistry and Physiology, 15(2), 181-191. https://doi.org/10.1016/0048-3575(81)90084-5

Gammon, D. W., Lawrence, L. J., and Casida, J. E. (1982). Pyrethroid toxicology: Protective effects of diazepam and phenobarbital in the mouse and the cockroach. Toxicology and Applied Pharmacology, 66(2), 290-296. https://doi.org/10.1016/0041-008x(82)90294-0

Gebreslassie, B. H., Yao, Y., and You, F. (2012). Design under uncertainty of hydrocarbon biorefinery supply chains: Multiobjective stochastic programming models, decomposition algorithm, and a comparison between CVa R and downside risk. AIChE Journal, 58(7), 2155-2179. https://doi.org/10.1002/aic.13844

Gerlach, R. W. (2012). Chiral chemistry and toxicity assessments for pyrethroid pesticides. Journal of the American Chemical Society. https://doi.org/10.1021/bk-2012-1099.ch002

Ghiasuddin, S. M., and Soderlund, D. M. (1985). Pyrethroid Insecticides, 24, 200-206. https://doi.org/10.1016/0048-3575(85)90129-4

Glorennec, P., Serrano, T., Fravallo, M., Warembourg, C., Monfort, C., Cordier, S., Viel, J. F., Le Gléau, F., Le Bot, B., and Chevrier, C. (2017). Determinants of children's exposure to pyrethroid insecticides in western France. Environment International, 104, 76-82. https://doi.org/10.1016/j.envint.2017.04.007

Goffinet, B., and Locatelli, A. (1969). Separation of dtrans-chrysanthemic acid from its optical and geometrical isomers. Chem [Abstr.]. Fr Pat. 1,536,458, 71, 90923w.

Hamill, O. P., Marty, A., Neher, E., Sakmann, B., and Sigworth, F. J. (1981). Improved patch-clamp techniques for high resolution current recording from ceils and cell-free membrane patches. Pflügers Archiv - European Journal of Physiology, 391(2), 85-100. https://doi.org/10.1007/BF00656997

Harris, R. A., and Allan, A. M. (1985). Functional coupling of 3,-aminobutyric acid receptors to chloride channels in brain membranes. Science, 228(4703), 1108-1110. https://doi.org/10.1126/science.2581319

Holan, G., O'Keefe, D. F., Virgona, C., and Walser, R. (1978). Structural and biological link between pyrethroids and DDT in new insecticides. Nature, 272(5655), 734-736. https://doi.org/10.1038/272734a0

Holloway, S. F., Salgado, V. L., Wu, C. H., and Narahashi, T. (1984). Maintained opening of single Na channels by fenvalerate. Social Neuroscience [Abstr.], 10, 864.

Hughes, E. A., Flores, A. P., Ramos, L. M., Zalts, A., Richard Glass, C., and Montserrat, J. M. (2008). Potential dermal exposure to deltamethrin and risk assessment for manual sprayers: Influence of crop type. Science of the Total Environment, 391(1), 34-40. https://doi.org/10.1016/j.scitotenv.2007.09.034

Hughes, M. F., and Edwards, B. C. (2010). In vitro dermal absorption of pyrethroid pesticides in human and rat skin. Toxicology and Applied Pharmacology, 246(1-2), 29-37. https://doi.org/10.1016/j.taap.2010.04.003

Hughes, M. F., and Edwards, B. C. (2016). In vivo dermal absorption of pyrethroid pesticides in the rat. Journal of Toxicology and Environmental Health. Part A, 79(2), 83-91. https://doi.org/10.1080/15287394.2015.1109571

Hussain, M. (ND). Environmental degradation: Realities and remedies/Mumtaz Hussain (1st ed).

Ingles, P. J., Adams, P. M., Knipple, D. C., and Soderlund, D. M. (1996). Characterization of voltage-sensitive sodium channel gene coding sequences from insecticide-susceptible and knockdown resistant house fly strains. Insect Biochemistry and Molecular Biology, 26(4), 319-326. https://doi.org/10.1016/0965-1748(95)00093-3

Ishaaya, I. (2003). Introduction: Biorational insecticides-mechanism and application. Archives of Insect Biochemistry and Physiology, 54(4), 144. https://doi.org/10.1002/arch.10111

J. A., Pickett (2004). New opportunities in neuroscience, but a great danger that some may be lost. In D. J. Beadle, I. R. Mellor and P. N. R. Usherwood (Eds.), Neurotox 2003: Neurotoxicological targets from functional genomics and proteomics . Society of Chemical Industry. 1-10. https://repository.rothamsted.ac.uk/item/893q1/new-opportunities-in-neuroscience-but-a-great-danger-that-some-may-be-lost

Kaneko, H. (2010). Pyrethroid chemistry and metabolism. In. In R. Krieger (Ed.), Hayyes' handbook of pesticide toxicology (3rd ed). https://doi.org/10.1016/B978-0-12-374367-1.00076-8

Kaneko, H. (2011). Pyrethroids: Mammalian metabolism and toxicity. Journal of Agricultural and Food Chemistry, 59(7), 2786-2791. https://doi.org/10.1021/jf102567z

Kato, T., Ueda, K., and Fujimoto, K. (1964). New insecticidally active chrysanthemates. Agricultural and Biological Chemistry, 28(12), 914-915. https://doi.org/10.1080/00021369.1964.10858319

Lawrence, L. J., Gee, K. W., and Yamamura, H. I. (1985). Interactions of pyrethroid insecticides with chloride ionophore-associated binding sites. NeuroToxicology, 6(2), 87-98. https://pubmed.ncbi.nlm.nih.gov/2410833/

Lidova, J., Stara, A., Kouba, A., and V. J. (2016). The effects of cypermethrin on oxidative stress and antioxidant biomarkers in marbled crayfish (Procambarus fallax f. virginalis). Neuro Endocrinology Letters, 37(Suppl1), 53-59. https://pubmed.ncbi.nlm.nih.gov/28263531/

Lummis, S. C. R., and Sattelle, D. B. (1986). Binding sites for [3H]GABA[3, H]flunitrazepam and [35S]TBPS in insect CNS. Neurochemistry International, 9(2), 287-293. https://doi.org/10.1016/0197-0186(86)90065-3

Lutnicka, H., and K. A. (2009). Pyrethroids as a predisposing factor in fish diseases. Ochr. Środ. Zasobów Natl, 41, 285-292.

Martel, J., and Huynh, C. (1967). Synthese de l'acide chrysanthemique lI. Bull. Soc. Chem., 985.

Mehrotra, K. N. (1990). Pyrethroids resistant insect pest management. Pesticide Research Journal, 2(1), 44-52.

Miyazaki, M., Ohyama, K., Dunlap, D. Y., and Matsumura, F. (1996). Cloning and sequencing of the Paratype sodium channel gene from susceptible and kdr-resistant German cockroaches (Blattella germanica) and house fly (Musca domestica). Molecular and General Genetics, 252(1-2), 61-68. https://doi.org/10.1007/s004389670007

Morgan, M. D. R. (1992). The BMA guide to pesticides, chemicals and health. Title. published on behalf of the British Medical Association by Edward Arnold. https://www.worldcat.org/title/bma-guide-to-pesticides-chemicals-and-health/oclc/28411539

Morgan, M. K. (2012). (n.d.). Children's exposures to pyrethroid insecticides at home: A review of data collected in published exposure measurement studies conducted in the United States. International Journal of Environmental Research and Public Health, 9(8), 2964e2985. https://doi.org/10.3390/ijerph9082964

Naeher, L. P., Tulve, N. S., Egeghy, P. P., Barr, D. B., Adetona, O., Fortmann, R. C., Needham, L. L., Bozeman, E., Hilliard, A., and Sheldon, L. S. (2010). Organophosphorus and pyrethroid insecticide urinary metabolite concentrations in young children living in a southeastern United States city. Science of the Total Environment, 408(5), 1145-1153. https://doi.org/10.1016/j.scitotenv.2009.10.022

Narahashi, T. (1962a). Effect of the insecticide allethrin on membrane potentials of cockroach giant axons. Journal of Cellular and Comparative Physiology, 59, 61-65. https://doi.org/10.1002/jcp.1030590108

Narahashi, T. (1962b). Nature of the negative after-potential increased by the insecticide allethrin in cockroach giant axons. Journal of Cellular and Comparative Physiology, 59, 67-76. https://doi.org/10.1002/jcp.1030590109

Narahashi, T. (1969). Mode of action of DDTa nd allethrin on nerve: Cellular and molecular mechanisms. Residue Reviews, 25, 275-288. https://doi.org/10.1007/978-1-4615-8443-8_21

Nasuti, C., Carloni, M., Fedeli, D., Gabbianelli, R., Di Stefano, A., Serafina, C. L., Silva, I., Domingues, V., and Ciccocioppo, R. (2013). Effects of early life permethrin exposure on spatial working memory and on monoamine levels in different brain areas of pre-senescent rats. Toxicology, 303, 162-168. https://doi.org/10.1016/j.tox.2012.09.016

Nillos, M. G., Gan, J., and Schlenk, D. (2008). Chemical analysis and enantioselective toxicity of pyrethroids. Journal of the American Chemical Society, 991, 400-414. https://doi.org/10.1021/bk-2008-0991.ch018

O'Reilly, A. O., Khambay, B. P., Williamson, M. S., Field, L. M., Wallace, B. A., and Davies, T. G. (2006). Modelling insecticide-binding sites in the voltage-gated sodium channel. Biochemical Journal, 396(2), 255-263. https://doi.org/10.1042/BJ20051925

Orsborne, J., DeRaedt Banks, S., Hendy, A., Gezan, S. A., Kaur, H., Wilder-Smith, A., Lindsay, S. W., and Logan, J. G. (2016). Personal protection of permethrin-treated clothing against Aedes aegypti, the vector of Dengue and Zika virus, in the Laboratory. PLOS ONE, 11(5), e0152805. https://doi.org/10.1371/journal.pone.0152805

Osborne, M. P., and Hart, R. J. (1979). Neurophysiological studies of the effects of permethrin upon pyrethroid resistant (kdr) and susceptible strains of dipteran larvae. Pesticide Science, 10(5), 407-413. https://doi.org/10.1002/ps.2780100507

Ostrea, E. M., Jr., Bielawski, D. M., Posecion, N. C., Jr., Corrion, M., Villanueva-Uy, E., Bernardo, R. C., Jin, Y., Janisse, J. J., and Ager, J. W. (2009). Combined analysis of prenatal (maternal hair and blood) and neonatal (infant hair, cord blood and meconium) matrices to detect fetal exposure of environmental pesticides. Environmental Research, 109(1), 116-122. https://doi.org/10.1016/j.envres.2008.09.004

Park, Y., Taylor, M. F., and Feyereisen, R. (1997). A valine 421 to methionine mutation in IS6 of the hscp voltage-gated sodium channel associated with pyrethroid resistance in Heliothis virescens F. Biochemical and Biophysical Research Communications, 239(3), 688-691. https://doi.org/10.1006/bbrc.1997.7511

Power, L. E., and Sudakin, D. L. (2007). Pyrethrin and pyrethroid exposures in the United States: A longitudinal analysis of incidents reported to poison centers. Journal of Medical Toxicology, 3(3), 94-99. https://doi.org/10.1007/BF03160917

Purves, D., Augustine, G. J., Fitzpatrick, D., Hall, W. C., LaMantia, A.-S., Mooney, R. D., Platt, M. L., and L. E. W. (2001). Neuroscience (2nd editio). Oxford University Press.

Ranjkesh, M. R., Naghili, B., Goldust, M., and Rezaee, E. (2013). The efficacy of permethrin 5% vs. oral ivermectin for the treatment of scabies. Annals of Parasitology, 59(4), 189-194. https://pubmed.ncbi.nlm.nih.gov/24791346/

Rashatwar, S. S., and Matsumura, F. (1985). Interaction of DDT and pyrethroids with calmodulin and its significance in the expression of enzyme activities of phosphodiesterase. Biochemical Pharmacology, 34(10), 1689-1694. https://doi.org/10.1016/0006-2952(85)90635-5

Rauch, F., Lhoste, J., and Birg, M. L. (1972). Proprietes insecticides du d-trans chrysanthemate de d-allethrolone. Mededel. Fak. Landbouw. Wetenschap. Gent, 37, 755. https://agris.fao.org/agris-search/search.do?recordID=US201303251574

Ray, D. E. (1991). Pesticides derived from plants and other organisms. Academic Press. (International Association of Bridge, Structural, Ornamental and Reinforcing Iron Workers J. H. Journal of Engineering Research L. (Eds.). (Ed.)).

Ruigt, G. S. F. (1985). Pyrethroids. In Comprehensive Insect Physiology G. A. Kerkut and L. I. Gilbert (Eds.), Biochemistry and pharmacology, 12, 183-262.

Salgado, V. L., Irving, S. N., and Miller, T. A. (1983). The importance of nerve terminal depolarization in pyrethroid poisoning of insects. Pesticide Biochemistry and Physiology, 20(2), 169-182. https://doi.org/10.1016/0048-3575(83)90021-4

Sawicki, R. M., and Thain, E. M. (1962). Insecticidal activity of pyrethrum extract and its four insecticidal constituents against house flies. IV. Knock-down activities of the four constituents. Journal of the Science of Food and Agriculture, 13(5), 292-297. https://doi.org/10.1002/jsfa.2740130504

Schechter, M. S., Green, N., and La Forge, F. B. (1949). Constituents of pyrethrum flowers. Journal of the American Chemical Society, XXIV Cinerolone and the synthesis of related cyclopentenolones, 71, 3165. https://doi.org/10.1021/ja01177a065

Sethi, S., Mathur, N., and P. B. (ND). Synthetic pyrethroids: A review. International Journal of Scientific and Engineering Research, January, 20(1).

Severson, D. W., Anthony, N. M., Andreev, O., and ffrench-Constant, R. H. (1997). Molecular mapping of insecticide resistance genes in the yellow fever mosquito (Aedes aegypti). Journal of Heredity, 88(6), 520-524. https://doi.org/10.1093/oxfordjournals.jhered.a023148

Singh, A. K., Tiwari, M. N., Prakash, O. SM (ND), and Singh, M. P.. (2012). A current review of cypermethrin-induced neurotoxicity and nigrostriatal dopaminergic neurodegeneration. Current Neuropharmacology, 10(1), 64-71. https://doi.org/10.2174/157015912799362779

Singleton, S. T., Lein, P. J., Farahat, F. M., Farahat, T., Bonner, M. R., Knaak, J. B., and Olson, J. R. (2014). Characterization of α-cypermethrin exposure in Egyptian agricultural workers. International Journal of Hygiene and Environmental Health, 217(4-5), 538-545. https://doi.org/10.1016/j.ijheh.2013.10.003

Skolarczyk, J., Pekar, J., and Nieradko-Iwanicka, B.. (2017). Immune disorders induced by exposure to pyrethroid insecticides. Postepy Hig Med Dosw (Online), 71(0)(I), 446-453. https://doi.org/10.5604/01.3001.0010.3827

Soderlund, D. M. (2008). Pyrethroids, knockdown resistance and sodium channels. Pest Management Science, 64(6), 610-616. https://doi.org/10.1002/ps.1574

Soderlund, D. M. (2012). Molecular mechanisms of pyrethroid insecticide neurotoxicity: Recent advances. Archives of Toxicology, 86(2), 165-181. https://doi.org/10.1007/s00204-011-0726-x

Spurlock, F., and Lee, M. (2008 (1991)). Synthetic pyrethroid use patterns, properties, and environmental effects. ACS (Am. Chem. Soc.) Symp. [Ser.]. https://doi.org/10.1021/bk-2008-0991.ch001

Taylor, M. F., Heckel, D. G., Brown, T. M., Kreitman, M. E., and Black, B. (1993). Linkage of pyrethroid insecticide resistance to a sodium channel locus in the tobacco budworm. Insect Biochemistry and Molecular Biology, 23(7), 763-775. https://doi.org/10.1016/0965-1748(93)90064-y

The pesticide manual world compendium. (1997) C. D. S. Tomlin (Ed.). https://www.worldcat.org/title/pesticide-manual-a-world-compendium/oclc/39223779

Toynton, K., Luukinen, B., Buhl, K., and S. D. (2009). Permethrin technical fact sheet. National Pesticide Information Center. http://npic.orst.edu/factsheets/archive/Permtech.html.

Wang, Y., Lv, L., Yu, Y., Yang, G., Xu, Z., Wang, Q., and Cai, L. (2017). Single and joint toxic effects of five selected pesticides on the early life stages of zebrafish (Denio renio). Chemosphere, 170, 61-67. https://doi.org/10.1016/j.chemosphere.2016.12.025

Williamson, M. S., Denholm, I., Bell, C. A., and Devonshire, A. L. (1993). Knockdown resistance (kdr) to DDT and pyrethroid insecticides maps to a sodium channel gene locus in the housefly (Musca domestica). Molecular and General Genetics, 240(1), 17-22. https://doi.org/10.1007/BF00276878

Williamson, M. S., Martinez-Torres, D., Hick, C. A., and Devonshire, A. L. (1996). Identification of mutations in the housefly para-type sodium channel gene associated with knockdown resistance (kdr) to pyrethroid insecticides. Molecular and General Genetics, 252(1-2), 51-60. https://doi.org/10.1007/BF02173204

World Health Organization (WHO).(2016).pesticide evaluation scheme, vector ecology and management. World Health Organization.

Wylie, B. J., Hauptman, M., Woolf, A. D., and Goldman, R. H. (2016). Insect repellants during pregnancy in the era of the Zika virus. Obstetrics and Gynecology, 128(5), 1111-1115. https://doi.org/10.1097/AOG.0000000000001685

Zamponi, G. W., Bourinet, E., Nelson, D., Nargeot, J., and Snutch, T. P. (1997). Crosstalk between G proteins and protein kinase C mediated by the calcium channel α(1) subunit. Nature, 385(6615), 442-446. https://doi.org/10.1038/385442a0

van den Bercken, J., Kroese, A. B. A., and Akkermans, L. M. A. (1979). Effects of insecticides on the sensory nervous system. In Neurotoxicology of Insecticides and Phermones, 210, 183-210. https://doi.org/10.1007/978-1-4684-0970-3_10




How to Cite

Ahmed, Z., & Athar, S. (2023). A COMPREHENSIVE REVIEW ON NEUROTOXICITY OF PYRETHROIDS. International Journal of Research -GRANTHAALAYAH, 11(1), 1–22. https://doi.org/10.29121/granthaalayah.v11.i1.2023.4924