• Cléber Silva e Silva Federal Institute of Education, Science, and Technology of Pará. Almirante Barroso Avenue, 1155 - Marco, Belém - PA - Brazil and Environmental and Analytical Chemistry Laboratory, Federal University of Pará. Augusto Correa Street, S/N - Guamá, Belém - PA - Brazil and Postgraduate Program in the National Network for the Teaching of Environmental Sciences, Federal University of Pará.Augusto Correa Street, S/N - Guamá, Belém - PA - Brazil.
  • Simone de Fátima Pinheiro Pereira
  • Pedro Moreira de Sousa Junior Environmental and Analytical Chemistry Laboratory, Federal University of Pará. Augusto Correa Street, S/N - Guamá, Belém - PA - Brazil and Federal Rural University of the Amazon. Barão de Capanema Avenue S/N - Caixa D'Água, Capanema - PA - Brazil.
  • Alan Marcel Fernandes de Souza University of the Amazon. Alcindo Cacela Avenue, 287 - Umarizal, Belém - PA - Brazil.
  • Daniel Pinheiro Nogueira
  • Davis Castro dos Santos
  • Ronaldo Magno Rocha Environmental and Analytical Chemistry Laboratory, Federal University of Pará. Augusto Correa Street, S/N - Guamá, Belém - PA - Brazil and Chemistry Postgraduate Program, Federal University of Pará. Augusto Correa Street, S/N - Guamá, Belém - PA - Brazil and Central Laboratory of the Pará Health Department. Augusto Montenegro Avenue, 524 - Parque Guajará, Belém - PA - Brazil.



Environmental Impact, Contamination, Toxic Elements, Rivers

Abstract [English]

The rivers of the Amazon are important water resources for the planet however they are gradually suffering from anthropic impacts, especially those arising from mining and industrial activity. In this study, the bioaccumulation factor of toxic elements in tissues of fish species collected in the Murucupi River, a local impacted by effluents from an alumina factory located in Barcarena, in the Brazilian Amazon, was evaluated. Twenty samples were collected from three species of fish Cichla spp, Eigenmannia sp., and Angelfish. The element Al, Cr, Cu, Fe, Mn, Ni, Pb, and Zn were analyzed in fish tissue and gills using inductively coupled plasma optical emission spectrometry. Regarding the concentration of the elements evaluated in the tissue, only Pb was not in compliance with the legislation. The BAF for the fish tissue samples indicated Cu bioaccumulation for the species Cichla spp (1130 around seven times higher than the established limit, Eigenmannia sp. (2885 fourteen times larger, and Angelfish (1640 eight times larger. Ni also showed bioaccumulation for the specie Cichla spp (150 and Eigenmannia sp. (145 around one and a half times higher than recommended for both species. Zn showed bioaccumulation for the species Cichla spp (4212, Eigenmannia sp. (3538 around four times higher for both species, and Angelfish (7942 around eight times higher. These elements with BAF above the recommended can present risks to the biota and consumers.


Download data is not yet available.


ANVISA. (2021). Agência Nacional de Vigilância Sanitária - Ministério da Saúde. Resolução RDC Nº 487, Dispõe sobre os limites máximos tolerados (LMT) de contaminantes em alimentos.

ATSDR. (2005). Agency for Toxic Substances and Disease Registry. Toxicological Profile for Lead. Division of Toxicology and Environmental Medicine. Atlanta, Georgia.

BAHNASA, W. Y. M. KHIDR, A. DHEINA, N. (2009). Seasonal variations of heavy metals concentrations in Mullet, Mugil cephalus and Liza ramada (Mugilidae) from Lake Manzala, Egypt, 13(2), 81-100. DOI:

BANERJEE, S. MAITI, S. K. KUMAR, A. (2015). Metal contamination in water and bioaccumulation of metals in the planktons, molluscs and fishes in Jamshedpur stretch of Subarnarekha River of Chotanagpur plateau, India. Water and Environment Journal, 29(2), 207-213. DOI:

BARROS, B. C. PEREIRA, S. F. P. PALHETA, D. C. SILVA, C. S. (2010). Determinação de Cd, Cr e Al em Tecido de Peixes Provenientes do Rio Gelado/APA, Floresta de Carajás-PA. Holos Environment, 10(2), 195-208. DOI:

CONAMA. (2005). Conselho Nacional de Meio Ambiente. Resolução n 357 de 17 de março de.

CUNNINGHAM, P. A. SULLIVAN, E. E. EVERETT, K. H. KOVACH, S. S. RAJAN, A. BARBER, M. C. (2019). Assessment of metal contamination in Arabian/Persian Gulf fish: A review. Marine Pollution Bulletin, 143, 264-283. DOI:

DALLAS, L. J. BEAN, T. P. TURNER, A. LYONS, B. P. JHA, A. N. (2013). Oxidative DNA damage may not mediate Ni-induced genotoxicity in marine mussels: Assessment of genotoxic biomarkers and transcriptional responses of key stress genes. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 754(1-2), 22-31. DOI:

DURAL, M. GÖKSU, M. Z. L. ÖZAK, A. A. (2007). Investigation of heavy metal levels in economically important fish species captured from the Tuzla lagoon. Food Chem, 102(1). 415-421. DOI:

ELNABRIS, K. J. MUZYED, S. K. EL-ASHGAR, N. M. (2013). Heavy metal concentrations in some commercially important fishes and their contribution to heavy metals exposure in Palestinian people of Gaza Strip (Palestine). Journal of the Association of Arab Universities for Basic and Applied Sciences, 13(1), 44-51. DOI:

FAKHRI, Y. DJAHED, B. TOOLABI, A. RAOOFI, A. GHOLIZADEH, A. ESLAMI, H. TAGHAVI, M. ALIPOUR, M. R. KHANEGHAH, A. M. (2020). Potentially toxic elements (PTEs) in fillet tissue of common carp (Cyprinus carpio): a systematic review, meta-analysis and risk assessment study. Toxin Reviews, 40(4), 1505-1517. DOI:

FENG, W. WANG, Z. XU, H. ZHANG, D. ZHANG, H. ZHU, W. (2020). Species specifc bioaccumulation of trace metals among fsh species from Xincun Lagoon. Scientifc Reports, 1-11. DOI:

GECHEVA, G. YANCHEVA, V. VELCHEVA, I. GEORGIEVA, E. STOYANOVA, S. ARNAUDOVA, D. STEFANOVA, V. GEORGIEVA, D. GENINA, V. TODOROVA, B. MOLLOV, I. (2020). Integrated Monitoring with Moss-Bag and Mussel Transplants in Reservoirs. Water, 12(6), 1-19. DOI:

GOBAS, F. A. P. C. WOLF, W. BURKHARD, L. P. VERBRUGGEN, E. PLOTZKE, K. (2009). Revisiting bioaccumulation criteria for POPs and PBT assessments. Integrated Environmental Assessment and Management, 5(4), 624-637. DOI:

GOOGLE EARTH. (2022). Programa de mapas por satélite. Disponível em.

GUO, B. JIAO, D. WANG, J. LEI, K. LIN, C. (2016). Trophic transfer of toxic elements in the estuarine invertebrate and fish food web of Daliao River, Liaodong Bay, China. Marine Pollution Bulletin, 113(1-2), 258-265. DOI:

HOGSTRAND, C. WILSON, R. W. POLGAR, D. WOOD, C. M. (1994). Effects of zinc on the kinetics of branchial calcium uptake in freshwater rainbow trout during adaptation to waterbone zinc. J. Exp. Biol, 186(1), 55-73. DOI:

IBGE. (2022). Instituto Brasileiro de Geografia e Estatística. Dados da população do município de Barcarena-PA Disponível em.

JAISHANKAR, M. TSETEN, T. ANBALAGAN, N. MATHEW, B. B. BEEREGOWDA, K. N. (2014). Toxicity, mechanism and health effects of some heavy metals. Interdiscip. Toxicol, 7(2), 60-72. DOI:

JOTHI, J. S. ANKA,I. Z. HASHEM, S. MORSHED, S. (2018). Assessment of heavy metal concentration in edible fish muscle and water sample collected from different location in Chittagong: a public health concern. Ukrainian Food Journal, 7(3), 464-471. DOI:

KARLSSON, S. MEILI, M. STUDSVIK, U. B. (2002). Bioaccumulation factors in aquatic ecosystems: A critical review. Swedish Nuclear Fuel and Waste Management Co, 67.

KHANEGHAHA, A. M. SANT'ANA, A. S. (2020). Systematic review and meta-analysis: applications in food science, challenges, and perspectives. Food Research International, 134, 109245. DOI:

KUMARI, P. (2018). Distribution of Metal Elements in Capillary Water, Overlying Water, Sediment, and Aquatic Biota of Three Interconnected Ecosystems. Environ. Process, 5, 385-411. DOI:

KUZ'MINA V. V. (2011). The influence of zinc and copper on the latency period for feeding and the food uptake in common carp, Cyprinus carpio L. Aquatic Toxicol, 102(1-2), 73-78. DOI:

KWOK, C. K. LIANG, Y. WANG, H. DONG, Y. H. LEUNG, S. Y. WONG, M. H. (2014). Bioaccumulation of heavy metals in fish and Ardeid at Pearl River Estuary, China. Ecotoxicology and Environmental Safety, 106, 62-67. DOI:

LARA, A. GALVÁN-MAGAÑA, F. ELORRIAGA-VERPLANCKEN, F. MARMOLEJO-RODRÍGUEZ, A. J. GONZALEZ-ARMAS, R. ARREOLA-MENDOZA, L. SUJITHA, S. B. JONATHAN, M. P. (2020). Bioaccumulation and trophic transfer of potentially toxic elements in the pelagic thresher shark Alopias pelagicus in Baja California Sur, Mexico. Marine Pollution Bulletin, 156, 1-9. DOI:

LLOYD, R. (1992). Pollution and freshwater fish. The Buckland Foundation, Oxford. 16, 176.

MARTINS, I. LIMA, I. V. (2001). Ecotoxicologia do manganês e seus compostos. Salvador: Centro de Recursos Ambientais, Série Cadernos de Referência Ambiental, 7, 121.

MCCARTHY, J. SHUGART, L. (1990). Biomarkers of Environmental Contamination. Lewis Publishers, CRC Press, New York, 73. file:///C:/Users/lenovo/Downloads/10.1201_9781351070263_previewpdf.pdf

MOHAMMED, A. MAY, T. ECHOLS, K. WALTHER, M. MANOO, A. MARAJ, D. AGARD, J. ORAZIO, C. (2012). Metals in sediments and fish from Sea Lots and Point Lisas harbors, Trinidad and Tobago. Marine Pollution Bulletin, 64(1), 169-173. DOI:

MOTTIN, E. CAPLAT, C. MAHAUT, M. L. COSTIL, K. BARILLIER, D. LEBEL, J. M. SERPENTINI, A. (2010). Effect of in vitro exposure to zinco on immunological parameters of haemocytes from the marine gastropod Haliotis tuberculata. Fish & Shellfish Immunology, 29(5), 846-853. DOI:

NAWAB, J. KHAN, S. XIAOPING, W. (2018). Ecological and health risk assessment of potentially toxic elements in the major rivers of Pakistan: General population vs. Fishermen. Chemosphere, 202, 154-164. DOI:

NTEZIYAREMYE, P. OMARA, T. (2020). Bioaccumulation of priority trace metals in edible muscles of West African lungfish (Protopterus annectens Owen, 1839) from Nyabarongo River, Rwanda. Cogent Environmental Science, 6(1), 1-16. DOI:

OMAR, W. A. WAFAI, M. Z. A. ABDO, H. M. DEFAN, T. A. A. E. PORAAS, M. M. (2015). Ecological Risk Assessment of Metal Pollution along Greater Cairo Sector of the River Nile, Egypt, Using Nile Tilapia, Oreochromis niloticus, as Bioindicator. Journal of Toxicology, 1-11. DOI:

OUTA, J. O. KOWENJE, C. O. AVENANT-OLDEWAGE, A. JIRSA, F. (2020). Trace Elements in Crustaceans, Mollusks and Fish in the Kenyan Part of Lake Victoria: Bioaccumulation, Bioindication and Health Risk Analysis. Archives of Environmental Contamination and Toxicology, 78, 589-603. DOI:

PEREIRA, S. F P. LIMA, M. A. FREITAS, K. H. MESCOUTO, C. S. SARAIVA, A. F. (2007). Estudo químico ambiental do rio Murucupi - Barcarena, PA, Brasil, área impactada pela produção de alumínio. Ambi-Agua, Taubaté, 2(3), 62-82. DOI:

PEREIRA, S. F. P. SARAIVA, A. C. F. (2015). Avaliação de elementos tóxicos em água, cabelo e peixe na região da Volta Grande do rio Xingu - local da futura UHE Belo Monte. VIII Congresso de Inovação Tecnológica em Energia Elétrica (CITENEL), Costa do Sauípe-BA, 1-8.

RAMOS-MIRAS, J. J. SANCHEZ-MUROS, M. J. MOROTE, E. TORRIJOS, M. GIL, C. ZAMANI-AHMADMAHMOODI, R. MARTIN, J. A. R. (2019). Potentially toxic elements in commonly consumed fish species from the western Mediterranean Sea (Almería Bay): Bioaccumulation in liver and muscle tissues in relation to biometric parameters. Science of the Total Environment, 671, 280-287. DOI:

ROWE, C. L. (2014). Bioaccumulation and effects of metals and trace elements from aquatic disposal of coal combustion residues: Recent advances and recommendations for further study. Science of the Total Environment, 490-496. DOI:

SALAM, M. A. PAUL, S. C. ZAIN, R. A. M. BHOWMIK, M. S. NATH, M. R. SIDDIQUA, S. A. AKA, T. D. IQBAL, M. A. KADIR, W. R. AHAMAD, R. B. KHALEQUE, A. RAK, A. E. AMIN, M. F. M. (2020). Trace metals contamination potential and health risk assessment of commonly consumed fish of Perak River, Malaysia. Plos One, 26, 1-18. DOI:

SANTOS, D. C. M. (2009). Toxidez aguda do zinco em lambaris Astyanax aff. Bimaculatus. Mestrado do Programa de Pósgraduação em Biologia Animal, Universidade Federal de Viçosa, 125.

SILVA, C. S. PEREIRA, S. F. P. SANTOS, D. C. MIRANDA, R.G. ROCHA, R. M. OLIVEIRA, G. R. F. SANTOS, L. R. SOUZA-JUNIOR, P. M. (2012). The Statistical Application on Assessment of the Balance Environmental restoration of the River Murucupi - Barcarena - PA - after the release of red mud. Proceedings of Safety, Health and Environment World Congress, 12, 59-63.

SILVA, F. A. O. (2012). Por uma gestão das águas na bacia hidrográfica do rio Murucupi-Barcarena-PA. Dissertação de Mestrado do Programa de Pós-graduação em Geografia, Universidade Federal do Pará, 161.

STANKOVIC, S. KALABA, P. STANKOVI, A. R. (2014). Biota as toxic metal indicators. Environ. Chem. Lett, 12, 63-84. DOI:

USEPA. (2000). Environmental Protection Agency. Methodology for deriving ambient water quality criteria for the protection of human health (2000): technical support document. Development of site-specific bioaccumulation factors, 185.

VIANA, L. F. CARDOSO, C. A. L. LIMA-JUNIOR, S. E. SÚAREZ, Y. R. FLORENTINO, A. C. (2020). Bioaccumulation of metal in liver tissue of fish in response to water toxicity of the Araguari-Amazon River, Brazil. Environ. Monit. Assess, 192(781), 1-11. DOI:

VU, C. T. LIN, C. YEH, G. VILLANUEVA, M. C. (2017). Bioaccumulation and potential sources of heavy metal contamination in fish species in Taiwan: assessment and possible human health implications. Environ. Sci. Pollut. Res, 24, 19422-19434. DOI:

WASSENAAR, P. N. H. VERBRUGGEN, E. M. J. CIERAAD, E. PEIJNENBURG, W. J. G. M. VIJVER, M. G. (2020). Variability in fish bioconcentration factors: Influences of study design and consequences for regulation. Chemosphere, 239, 1-9. DOI:

WILSON, R. W. TAYLOR, E. W. (1993). Differential responses to copper in rainbow trout, (Oncorhynchus mykiss) acclimated to sea water and brackish water. Journal of Comparative Physiology B, 163, 239-246. DOI:

YANG, G. SUN, X. SONG, Z. (2020). Trophic level and heavy metal pollution of Sardinella albella in Liusha Bay, Beibu Gulf of the South China Sea. Marine Pollution Bulletin, 156, 1-8. DOI:

YI, Y. J. ZHANG, S. H. (2012). The relationships between fish heavy metal concentrations and fish size in the upper and middle reach of Yangtze River, Procedia Environmental Sciences, 13, 1699-1707. DOI:




How to Cite

e Silva, C. S., Pereira, S. de F. P., de Sousa Junior, P. M., de Souza, A. M. F., Nogueira, D. P., dos Santos, D. C., & Rocha, R. M. (2022). BIOACCUMULATION FACTOR (BAF) IN FISH CAUGHT IN A RIVER IMPACTED BY EFFLUENTS FROM AN ALUMINA PLANT IN THE EASTERN BRAZILIAN AMAZON. International Journal of Research -GRANTHAALAYAH, 10(5), 154–171.

Most read articles by the same author(s)