BIOACCUMULATION FACTOR (BAF) IN FISH CAUGHT IN A RIVER IMPACTED BY EFFLUENTS FROM AN ALUMINA PLANT IN THE EASTERN BRAZILIAN AMAZON
DOI:
https://doi.org/10.29121/granthaalayah.v10.i5.2022.4632Keywords:
Environmental Impact, Contamination, Toxic Elements, RiversAbstract [English]
The rivers of the Amazon are important water resources for the planet however they are gradually suffering from anthropic impacts, especially those arising from mining and industrial activity. In this study, the bioaccumulation factor of toxic elements in tissues of fish species collected in the Murucupi River, a local impacted by effluents from an alumina factory located in Barcarena, in the Brazilian Amazon, was evaluated. Twenty samples were collected from three species of fish Cichla spp, Eigenmannia sp., and Angelfish. The element Al, Cr, Cu, Fe, Mn, Ni, Pb, and Zn were analyzed in fish tissue and gills using inductively coupled plasma optical emission spectrometry. Regarding the concentration of the elements evaluated in the tissue, only Pb was not in compliance with the legislation. The BAF for the fish tissue samples indicated Cu bioaccumulation for the species Cichla spp (1130 L.kg-1) around seven times higher than the established limit, Eigenmannia sp. (2885 L.kg-1) fourteen times larger, and Angelfish (1640 L.kg-1) eight times larger. Ni also showed bioaccumulation for the specie Cichla spp (150 L.kg-1) and Eigenmannia sp. (145 L.kg-1) around one and a half times higher than recommended for both species. Zn showed bioaccumulation for the species Cichla spp (4212 L.kg-1), Eigenmannia sp. (3538 L.kg-1) around four times higher for both species, and Angelfish (7942 L.kg-1) around eight times higher. These elements with BAF above the recommended can present risks to the biota and consumers.
Downloads
References
ANVISA. (2021). Agência Nacional de Vigilância Sanitária - Ministério da Saúde. Resolução RDC Nº 487, Dispõe sobre os limites máximos tolerados (LMT) de contaminantes em alimentos.
ATSDR. (2005). Agency for Toxic Substances and Disease Registry. Toxicological Profile for Lead. Division of Toxicology and Environmental Medicine. Atlanta, Georgia.
BAHNASA, W. Y. M. KHIDR, A. DHEINA, N. (2009). Seasonal variations of heavy metals concentrations in Mullet, Mugil cephalus and Liza ramada (Mugilidae) from Lake Manzala, Egypt, 13(2), 81-100. https://doi.org/10.21608/ejabf.2009.2034 DOI: https://doi.org/10.21608/ejabf.2009.2034
BANERJEE, S. MAITI, S. K. KUMAR, A. (2015). Metal contamination in water and bioaccumulation of metals in the planktons, molluscs and fishes in Jamshedpur stretch of Subarnarekha River of Chotanagpur plateau, India. Water and Environment Journal, 29(2), 207-213. https://doi.org/10.1111/wej.12108 DOI: https://doi.org/10.1111/wej.12108
BARROS, B. C. PEREIRA, S. F. P. PALHETA, D. C. SILVA, C. S. (2010). Determinação de Cd, Cr e Al em Tecido de Peixes Provenientes do Rio Gelado/APA, Floresta de Carajás-PA. Holos Environment, 10(2), 195-208. https://doi.org/10.14295/holos.v10i2.3668 DOI: https://doi.org/10.14295/holos.v10i2.3668
CONAMA. (2005). Conselho Nacional de Meio Ambiente. Resolução n 357 de 17 de março de.
CUNNINGHAM, P. A. SULLIVAN, E. E. EVERETT, K. H. KOVACH, S. S. RAJAN, A. BARBER, M. C. (2019). Assessment of metal contamination in Arabian/Persian Gulf fish: A review. Marine Pollution Bulletin, 143, 264-283. https://doi.org/10.1016/j.marpolbul.2019.04.007 DOI: https://doi.org/10.1016/j.marpolbul.2019.04.007
DALLAS, L. J. BEAN, T. P. TURNER, A. LYONS, B. P. JHA, A. N. (2013). Oxidative DNA damage may not mediate Ni-induced genotoxicity in marine mussels: Assessment of genotoxic biomarkers and transcriptional responses of key stress genes. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 754(1-2), 22-31. https://doi.org/10.1016/j.mrgentox.2013.03.009 DOI: https://doi.org/10.1016/j.mrgentox.2013.03.009
DURAL, M. GÖKSU, M. Z. L. ÖZAK, A. A. (2007). Investigation of heavy metal levels in economically important fish species captured from the Tuzla lagoon. Food Chem, 102(1). 415-421. https://doi.org/10.1016/j.foodchem.2006.03.001 DOI: https://doi.org/10.1016/j.foodchem.2006.03.001
ELNABRIS, K. J. MUZYED, S. K. EL-ASHGAR, N. M. (2013). Heavy metal concentrations in some commercially important fishes and their contribution to heavy metals exposure in Palestinian people of Gaza Strip (Palestine). Journal of the Association of Arab Universities for Basic and Applied Sciences, 13(1), 44-51. https://doi.org/10.1016/j.jaubas.2012.06.001 DOI: https://doi.org/10.1016/j.jaubas.2012.06.001
FAKHRI, Y. DJAHED, B. TOOLABI, A. RAOOFI, A. GHOLIZADEH, A. ESLAMI, H. TAGHAVI, M. ALIPOUR, M. R. KHANEGHAH, A. M. (2020). Potentially toxic elements (PTEs) in fillet tissue of common carp (Cyprinus carpio): a systematic review, meta-analysis and risk assessment study. Toxin Reviews, 40(4), 1505-1517. https://doi.org/10.1080/15569543.2020.1737826 DOI: https://doi.org/10.1080/15569543.2020.1737826
FENG, W. WANG, Z. XU, H. ZHANG, D. ZHANG, H. ZHU, W. (2020). Species specifc bioaccumulation of trace metals among fsh species from Xincun Lagoon. Scientifc Reports, 1-11. https://doi.org/10.1038/s41598-020-77917-y DOI: https://doi.org/10.1038/s41598-020-77917-y
GECHEVA, G. YANCHEVA, V. VELCHEVA, I. GEORGIEVA, E. STOYANOVA, S. ARNAUDOVA, D. STEFANOVA, V. GEORGIEVA, D. GENINA, V. TODOROVA, B. MOLLOV, I. (2020). Integrated Monitoring with Moss-Bag and Mussel Transplants in Reservoirs. Water, 12(6), 1-19. https://doi.org/10.3390/w12061800 DOI: https://doi.org/10.3390/w12061800
GOBAS, F. A. P. C. WOLF, W. BURKHARD, L. P. VERBRUGGEN, E. PLOTZKE, K. (2009). Revisiting bioaccumulation criteria for POPs and PBT assessments. Integrated Environmental Assessment and Management, 5(4), 624-637. https://doi.org/10.1897/IEAM_2008-089.1 DOI: https://doi.org/10.1897/IEAM_2008-089.1
GOOGLE EARTH. (2022). Programa de mapas por satélite. Disponível em. https://google-earth.br.uptodown.com/windows
GUO, B. JIAO, D. WANG, J. LEI, K. LIN, C. (2016). Trophic transfer of toxic elements in the estuarine invertebrate and fish food web of Daliao River, Liaodong Bay, China. Marine Pollution Bulletin, 113(1-2), 258-265. https://doi.org/10.1016/j.marpolbul.2016.09.031 DOI: https://doi.org/10.1016/j.marpolbul.2016.09.031
HOGSTRAND, C. WILSON, R. W. POLGAR, D. WOOD, C. M. (1994). Effects of zinc on the kinetics of branchial calcium uptake in freshwater rainbow trout during adaptation to waterbone zinc. J. Exp. Biol, 186(1), 55-73.https://doi.org/10.1242/jeb.186.1.55 DOI: https://doi.org/10.1242/jeb.186.1.55
IBGE. (2022). Instituto Brasileiro de Geografia e Estatística. Dados da população do município de Barcarena-PA Disponível em. https://www.ibge.gov.br/cidades-e-estados/pa/barcarena.html
JAISHANKAR, M. TSETEN, T. ANBALAGAN, N. MATHEW, B. B. BEEREGOWDA, K. N. (2014). Toxicity, mechanism and health effects of some heavy metals. Interdiscip. Toxicol, 7(2), 60-72. https://doi.org/10.2478/intox-2014-0009 DOI: https://doi.org/10.2478/intox-2014-0009
JOTHI, J. S. ANKA,I. Z. HASHEM, S. MORSHED, S. (2018). Assessment of heavy metal concentration in edible fish muscle and water sample collected from different location in Chittagong: a public health concern. Ukrainian Food Journal, 7(3), 464-471. https://doi.org/10.24263/2304-974X-2018-7-3-11 DOI: https://doi.org/10.24263/2304-974X-2018-7-3-11
KARLSSON, S. MEILI, M. STUDSVIK, U. B. (2002). Bioaccumulation factors in aquatic ecosystems: A critical review. Swedish Nuclear Fuel and Waste Management Co, 67. https://www.osti.gov/etdeweb/servlets/purl/20293388
KHANEGHAHA, A. M. SANT'ANA, A. S. (2020). Systematic review and meta-analysis: applications in food science, challenges, and perspectives. Food Research International, 134, 109245. https://doi.org/10.1016/j.foodres.2020.109245 DOI: https://doi.org/10.1016/j.foodres.2020.109245
KUMARI, P. (2018). Distribution of Metal Elements in Capillary Water, Overlying Water, Sediment, and Aquatic Biota of Three Interconnected Ecosystems. Environ. Process, 5, 385-411. https://doi.org/10.1007/s40710-018-0303-x DOI: https://doi.org/10.1007/s40710-018-0303-x
KUZ'MINA V. V. (2011). The influence of zinc and copper on the latency period for feeding and the food uptake in common carp, Cyprinus carpio L. Aquatic Toxicol, 102(1-2), 73-78. https://doi.org/10.1016/j.aquatox.2010.12.018 DOI: https://doi.org/10.1016/j.aquatox.2010.12.018
KWOK, C. K. LIANG, Y. WANG, H. DONG, Y. H. LEUNG, S. Y. WONG, M. H. (2014). Bioaccumulation of heavy metals in fish and Ardeid at Pearl River Estuary, China. Ecotoxicology and Environmental Safety, 106, 62-67. https://doi.org/10.1016/j.ecoenv.2014.04.016 DOI: https://doi.org/10.1016/j.ecoenv.2014.04.016
LARA, A. GALVÁN-MAGAÑA, F. ELORRIAGA-VERPLANCKEN, F. MARMOLEJO-RODRÍGUEZ, A. J. GONZALEZ-ARMAS, R. ARREOLA-MENDOZA, L. SUJITHA, S. B. JONATHAN, M. P. (2020). Bioaccumulation and trophic transfer of potentially toxic elements in the pelagic thresher shark Alopias pelagicus in Baja California Sur, Mexico. Marine Pollution Bulletin, 156, 1-9. https://doi.org/10.1016/j.marpolbul.2020.111192 DOI: https://doi.org/10.1016/j.marpolbul.2020.111192
LLOYD, R. (1992). Pollution and freshwater fish. The Buckland Foundation, Oxford. 16, 176. https://books.google.co.in/books/about/Pollution_and_Freshwater_Fish.html?id=a2phQgAACAAJ&redir_esc=y
MARTINS, I. LIMA, I. V. (2001). Ecotoxicologia do manganês e seus compostos. Salvador: Centro de Recursos Ambientais, Série Cadernos de Referência Ambiental, 7, 121. https://docplayer.com.br/7124736-Ecotoxicologia-do-manganes-e-seus-compostos.html
MCCARTHY, J. SHUGART, L. (1990). Biomarkers of Environmental Contamination. Lewis Publishers, CRC Press, New York, 73. file:///C:/Users/lenovo/Downloads/10.1201_9781351070263_previewpdf.pdf
MOHAMMED, A. MAY, T. ECHOLS, K. WALTHER, M. MANOO, A. MARAJ, D. AGARD, J. ORAZIO, C. (2012). Metals in sediments and fish from Sea Lots and Point Lisas harbors, Trinidad and Tobago. Marine Pollution Bulletin, 64(1), 169-173. https://doi.org/10.1016/j.marpolbul.2011.10.036 DOI: https://doi.org/10.1016/j.marpolbul.2011.10.036
MOTTIN, E. CAPLAT, C. MAHAUT, M. L. COSTIL, K. BARILLIER, D. LEBEL, J. M. SERPENTINI, A. (2010). Effect of in vitro exposure to zinco on immunological parameters of haemocytes from the marine gastropod Haliotis tuberculata. Fish & Shellfish Immunology, 29(5), 846-853. https://doi.org/10.1016/j.fsi.2010.07.022 DOI: https://doi.org/10.1016/j.fsi.2010.07.022
NAWAB, J. KHAN, S. XIAOPING, W. (2018). Ecological and health risk assessment of potentially toxic elements in the major rivers of Pakistan: General population vs. Fishermen. Chemosphere, 202, 154-164. https://doi.org/10.1016/j.chemosphere.2018.03.082 DOI: https://doi.org/10.1016/j.chemosphere.2018.03.082
NTEZIYAREMYE, P. OMARA, T. (2020). Bioaccumulation of priority trace metals in edible muscles of West African lungfish (Protopterus annectens Owen, 1839) from Nyabarongo River, Rwanda. Cogent Environmental Science, 6(1), 1-16. https://doi.org/10.1080/23311843.2020.1779557 DOI: https://doi.org/10.1080/23311843.2020.1779557
OMAR, W. A. WAFAI, M. Z. A. ABDO, H. M. DEFAN, T. A. A. E. PORAAS, M. M. (2015). Ecological Risk Assessment of Metal Pollution along Greater Cairo Sector of the River Nile, Egypt, Using Nile Tilapia, Oreochromis niloticus, as Bioindicator. Journal of Toxicology, 1-11. https://doi.org/10.1155/2015/167319 DOI: https://doi.org/10.1155/2015/167319
OUTA, J. O. KOWENJE, C. O. AVENANT-OLDEWAGE, A. JIRSA, F. (2020). Trace Elements in Crustaceans, Mollusks and Fish in the Kenyan Part of Lake Victoria: Bioaccumulation, Bioindication and Health Risk Analysis. Archives of Environmental Contamination and Toxicology, 78, 589-603. https://doi.org/10.1007/s00244-020-00715-0 DOI: https://doi.org/10.1007/s00244-020-00715-0
PEREIRA, S. F P. LIMA, M. A. FREITAS, K. H. MESCOUTO, C. S. SARAIVA, A. F. (2007). Estudo químico ambiental do rio Murucupi - Barcarena, PA, Brasil, área impactada pela produção de alumínio. Ambi-Agua, Taubaté, 2(3), 62-82. https://doi.org/10.4136/ambi-agua.34 DOI: https://doi.org/10.4136/ambi-agua.34
PEREIRA, S. F. P. SARAIVA, A. C. F. (2015). Avaliação de elementos tóxicos em água, cabelo e peixe na região da Volta Grande do rio Xingu - local da futura UHE Belo Monte. VIII Congresso de Inovação Tecnológica em Energia Elétrica (CITENEL), Costa do Sauípe-BA, 1-8.
RAMOS-MIRAS, J. J. SANCHEZ-MUROS, M. J. MOROTE, E. TORRIJOS, M. GIL, C. ZAMANI-AHMADMAHMOODI, R. MARTIN, J. A. R. (2019). Potentially toxic elements in commonly consumed fish species from the western Mediterranean Sea (Almería Bay): Bioaccumulation in liver and muscle tissues in relation to biometric parameters. Science of the Total Environment, 671, 280-287. https://doi.org/10.1016/j.scitotenv.2019.03.359 DOI: https://doi.org/10.1016/j.scitotenv.2019.03.359
ROWE, C. L. (2014). Bioaccumulation and effects of metals and trace elements from aquatic disposal of coal combustion residues: Recent advances and recommendations for further study. Science of the Total Environment, 490-496. https://doi.org/10.1016/j.scitotenv.2014.03.119 DOI: https://doi.org/10.1016/j.scitotenv.2014.03.119
SALAM, M. A. PAUL, S. C. ZAIN, R. A. M. BHOWMIK, M. S. NATH, M. R. SIDDIQUA, S. A. AKA, T. D. IQBAL, M. A. KADIR, W. R. AHAMAD, R. B. KHALEQUE, A. RAK, A. E. AMIN, M. F. M. (2020). Trace metals contamination potential and health risk assessment of commonly consumed fish of Perak River, Malaysia. Plos One, 26, 1-18. https://doi.org/10.1371/journal.pone.0241320 DOI: https://doi.org/10.1371/journal.pone.0241320
SANTOS, D. C. M. (2009). Toxidez aguda do zinco em lambaris Astyanax aff. Bimaculatus. Mestrado do Programa de Pósgraduação em Biologia Animal, Universidade Federal de Viçosa, 125. https://www.locus.ufv.br/bitstream/123456789/2211/1/texto%20completo.pdf
SILVA, C. S. PEREIRA, S. F. P. SANTOS, D. C. MIRANDA, R.G. ROCHA, R. M. OLIVEIRA, G. R. F. SANTOS, L. R. SOUZA-JUNIOR, P. M. (2012). The Statistical Application on Assessment of the Balance Environmental restoration of the River Murucupi - Barcarena - PA - after the release of red mud. Proceedings of Safety, Health and Environment World Congress, 12, 59-63.
SILVA, F. A. O. (2012). Por uma gestão das águas na bacia hidrográfica do rio Murucupi-Barcarena-PA. Dissertação de Mestrado do Programa de Pós-graduação em Geografia, Universidade Federal do Pará, 161. https://ppgeo.propesp.ufpa.br/ARQUIVOS/dissertacoes/2010/DISSERTA%C3%87%C3%83O%20FL%C3%81VIA%20ADRIANE.pdf
STANKOVIC, S. KALABA, P. STANKOVI, A. R. (2014). Biota as toxic metal indicators. Environ. Chem. Lett, 12, 63-84. https://doi.org/10.1007/s10311-013-0430-6 DOI: https://doi.org/10.1007/s10311-013-0430-6
USEPA. (2000). Environmental Protection Agency. Methodology for deriving ambient water quality criteria for the protection of human health (2000): technical support document. Development of site-specific bioaccumulation factors, 185. https://www.epa.gov/sites/default/files/2018-12/documents/methodology-wqc-protection-hh-2000-volume1.pdf
VIANA, L. F. CARDOSO, C. A. L. LIMA-JUNIOR, S. E. SÚAREZ, Y. R. FLORENTINO, A. C. (2020). Bioaccumulation of metal in liver tissue of fish in response to water toxicity of the Araguari-Amazon River, Brazil. Environ. Monit. Assess, 192(781), 1-11. https://doi.org/10.1007/s10661-020-08696-2 DOI: https://doi.org/10.1007/s10661-020-08696-2
VU, C. T. LIN, C. YEH, G. VILLANUEVA, M. C. (2017). Bioaccumulation and potential sources of heavy metal contamination in fish species in Taiwan: assessment and possible human health implications. Environ. Sci. Pollut. Res, 24, 19422-19434. https://doi.org/10.1007/s11356-017-9590-4 DOI: https://doi.org/10.1007/s11356-017-9590-4
WASSENAAR, P. N. H. VERBRUGGEN, E. M. J. CIERAAD, E. PEIJNENBURG, W. J. G. M. VIJVER, M. G. (2020). Variability in fish bioconcentration factors: Influences of study design and consequences for regulation. Chemosphere, 239, 1-9. https://doi.org/10.1016/j.chemosphere.2019.124731 DOI: https://doi.org/10.1016/j.chemosphere.2019.124731
WILSON, R. W. TAYLOR, E. W. (1993). Differential responses to copper in rainbow trout, (Oncorhynchus mykiss) acclimated to sea water and brackish water. Journal of Comparative Physiology B, 163, 239-246. https://doi.org/10.1007/BF00261671 DOI: https://doi.org/10.1007/BF00261671
YANG, G. SUN, X. SONG, Z. (2020). Trophic level and heavy metal pollution of Sardinella albella in Liusha Bay, Beibu Gulf of the South China Sea. Marine Pollution Bulletin, 156, 1-8. https://doi.org/10.1016/j.marpolbul.2020.111204 DOI: https://doi.org/10.1016/j.marpolbul.2020.111204
YI, Y. J. ZHANG, S. H. (2012). The relationships between fish heavy metal concentrations and fish size in the upper and middle reach of Yangtze River, Procedia Environmental Sciences, 13, 1699-1707. https://doi.org/10.1016/j.proenv.2012.01.163 DOI: https://doi.org/10.1016/j.proenv.2012.01.163
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Cléber Silva e Silva, Simone de Fátima Pinheiro Pereira, Pedro Moreira de Sousa Junior, Alan Marcel Fernandes de Souza, Daniel Pinheiro Nogueira, Davis Castro dos Santos, Ronaldo Magno Rocha
This work is licensed under a Creative Commons Attribution 4.0 International License.
With the licence CC-BY, authors retain the copyright, allowing anyone to download, reuse, re-print, modify, distribute, and/or copy their contribution. The work must be properly attributed to its author.
It is not necessary to ask for further permission from the author or journal board.
This journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge.