INVESTIGATION OF THERMAL CONDUCTIVITY OF LUFFA AND LUFFA-COIR REINFORCED EPOXY COMPOSITES

Authors

  • K. Anbukarasi Department of Mechanical Engineering, ThanthaiPeriyar Government institute of Technology, Vellore 632 002, India
  • S. Imran Hussain Department of Applied Science and Technology, AC Tech Campus, Anna University, Chennai 600 025, India
  • S. Kalaiselvam Department of Applied Science and Technology, AC Tech Campus, Anna University, Chennai 600 025, India

DOI:

https://doi.org/10.29121/granthaalayah.v8.i12.2020.2534

Keywords:

Natural Fibre, Epoxy, Hybrid, Thermal Conductivity, Theoretical Model, Thermal Stability

Abstract [English]

Thermal behavior of luffa and coir reinforced epoxy composites have been evaluated for a constant total fiber volume fraction 0.4Vf by varying the ratio of luffa and coir fiber. Thermal conductivity of luffa-epoxy and luffa-coir reinforced epoxy composite was studied experimentally and analytically in terms of fiber size and fiber volume. Thermal conductivity of composites was investigated experimentally by a guarded heat flow meter method. The experimental results at different volume fraction were compared with three theoretical models. The composite C has the lowest thermal conductivity of 0.206 W/mk with 0.81 % of voids. The experimental values of thermal conductivity of hybrid composites are the good correlation with the Maxwell and Maxwell-Eucken models. As in a case of 0.4 Vf of luffa-epoxy composites these values are closer to the rule of mixture models. The thermal stability of the composites was investigated by thermogravimetric analysis. This result reveals that the hybridization of luffa and coir with epoxy allows a significantly improved insulation ability of the composites.

Downloads

Download data is not yet available.

References

Sergio N. Monteiro, Veronica Calado , Rube´n Jesus S. et al. Thermogravimetric behavior of natural fibers reinforced polymer composites—An overview. Materials Science & Engineering A 557, 2012 17–28 DOI: https://doi.org/10.1016/j.msea.2012.05.109

Vijay Kumar Thakur, Manju Kumari Thakur. Processing and characterization of natural cellulose fibers/thermoset polymer composites. Carbohydrate Polymers, 109, 2014, 102–117 DOI: https://doi.org/10.1016/j.carbpol.2014.03.039

Santhiyarani Biswas, Amar Patnaik, and Ritesh kaundal. Effect of red mud and copper slag particles on physical and mechanical properties of bamboo-fiber-reinforced epoxy composites. Hindawi publishing corporation Advances in Mechanical Engineering, Vol 2012, Articles ID 141248, 6 pages, doi: 10.1155/2012/141248. DOI: https://doi.org/10.1155/2012/141248

Omar Faruka,d, Andrzej K. Bledzkia, Hans-Peter Fink, et al. Biocomposites reinforced with natural fibers: 2000–2010. Progress in Polymer Science, 37, 2012, 1552– 1596. DOI: https://doi.org/10.1016/j.progpolymsci.2012.04.003

Valcineide OA. Tanobe, Thais HS. Flores-Sahagun, et al. Sponge Gourd (luffa Cylindrica) Reinforced Polyester composites: Preparation and properties. Defenece science journal, Vol.64, No.3, 2014, 273-280, doi:10.14429/dsj.64.7327. DOI: https://doi.org/10.14429/dsj.64.7327

Anbukarasi, S. Kalaiselvam. Study of effect of fibre volume and dimension on mechanical, thermal,and water absorption behaviour of luffa reinforced epoxy composites. Materials and Design, 66, 2015, 321–330. DOI: https://doi.org/10.1016/j.matdes.2014.10.078

Demira H, Atiklera U, Balkosea D, Tıhmınlıoglua F. The effect of fiber surface treatments on the tensile and water sorption properties of polypropylene–luffa fiber composites. Composites: Part A, 37, 2006, 447–456 DOI: https://doi.org/10.1016/j.compositesa.2005.05.036

Azwa ZN, Yousif BF. Characteristics of kenaf fibre/epoxy composites subjected to thermal Degradation. Polymer Degradation and Stability, 98, 2013, 2752-2759 DOI: https://doi.org/10.1016/j.polymdegradstab.2013.10.008

Ke Liu, Hitoshi Takagi, Ryosuke Osugi, Zhimao Yang. Effect of physicochemical structure of natural fiber on transverse thermal conductivity of unidirectional abaca/bamboo fiber composites. Composites: Part A, 43, 2012, 1234–1241 DOI: https://doi.org/10.1016/j.compositesa.2012.02.020

Ke Liu, Xiaozhe Zhang, Hitoshi Takagi, et al. Effect of chemical treatments on transverse thermal conductivity of unidirectional abaca fiber/epoxy composite Composites: Part A, 66 2014, 227–236. DOI: https://doi.org/10.1016/j.compositesa.2014.07.018

Amar Patnaikk, Md Abdulla, Aloa Satapathy, et al. A study on a possible correlation between thermal conductivity and wear resistance of particulate filled polymer composites. Materials and Design, 31, 2010, 837-849.

Cristel Onésippe, Nady Passe-Coutrin, Fernando Toro, et al. Sugarcane bagasse fibres reinforced cement composites: Thermal considerations Composites: Part A, 41, 2010, 549–556 DOI: https://doi.org/10.1016/j.compositesa.2010.01.002

Ramanaiah K, Ratna Prasad AV, Hema Chandra Reddy K. Thermo physical properties of elephant grass fiber-reinforced polyester composites. Materials Letters, 89, 2012, 156–158 DOI: https://doi.org/10.1016/j.matlet.2012.08.070

Maries Idicula, Abderrahim Boudenne, Umadevi L et al. Thermophysical properties of natural fibre reinforced polyester composites. Composites Science and Technology, 66, 2006, 2719–2725. DOI: https://doi.org/10.1016/j.compscitech.2006.03.007

Alsinaa OLS, De Carvalhob LH, Ramos Filhob FG et al. Thermal properties of hybrid lignocellulosic fabric-reinforced polyester matrix composites. Polymer Testing, 24, 2005 81–85. DOI: https://doi.org/10.1016/j.polymertesting.2004.07.005

Sudhir Kumar Saw, Raghwendra Purwar, Sourabh Nandy, et al. Fabrication, Characterization, and Evaluation of Luffa Cylindrica Fiber Reinforced Epoxy Composites. Bioresources.com. 2013

Verma1 D, Gope PC, Shandilya1 A, et al. Coir Fibre Reinforcement and Application in Polymer Composites: A Review. J. Mater. Environ. Sci. 4 (2), 2013, 263-276.

Journal of brazilian society for natural fibers www.scielo.br/scielo.php?pid=51678-58782006000100005.

Johan banjare, yagya kumar sahu, alok agrawal, et al. Physical and thermal characterization of red mud reinforced epoxy composites: an experimental investigation. Procedia material science, 5, 2014, 755-763. DOI: https://doi.org/10.1016/j.mspro.2014.07.325

Ramanaiah K, Ratna Prasad AV, Hema Chandra Reddy K. Thermal and mechanical properties of waste grass broom fiber-reinforced polyester composites. Materials and Design 40, 2012, 103–108. DOI: https://doi.org/10.1016/j.matdes.2012.03.034

Giedrius Balčiūnas, Sigitas Vėjelis, Saulius Vaitkus, et al. Physical Properties and Structure of Composite Made by Using Hemp Hurds and Different Binding, Materials Procedia Engineering, 57, 2013, 159 – 166 DOI: https://doi.org/10.1016/j.proeng.2013.04.023

Amar Patnaik, Md Abdulla, Alok Satapathy, et al. A study on a possible correlation between thermal conductivity and wear resistance of particulate filled polymer composites. Materials and Design, 31, 2010, 837–849. DOI: https://doi.org/10.1016/j.matdes.2009.07.046

Downloads

Published

2020-12-26

How to Cite

Anbukarasi, K., Hussain, S. I., & Kalaiselvam, S. (2020). INVESTIGATION OF THERMAL CONDUCTIVITY OF LUFFA AND LUFFA-COIR REINFORCED EPOXY COMPOSITES. International Journal of Research -GRANTHAALAYAH, 8(12), 69–79. https://doi.org/10.29121/granthaalayah.v8.i12.2020.2534