• Fenky Marsandi Department of Agriculture Science, Student of Doctoral Post-Graduate Program, Universitas Andalas, Limau Manih, Padang, West Sumatra, Indonesia
  • Hermansah Department of Soil Science, Universitas Andalas, Limau Manih, Padang, West Sumatra, Indonesia
  • Agustian Department of Soil Science, Universitas Andalas, Limau Manih, Padang, West Sumatra, Indonesia
  • Syafrimen Yasin Department of Soil Science, Universitas Andalas, Limau Manih, Padang, West Sumatra, Indonesia



Forest, Soil Fauna, Food Web, Functional, Predator

Abstract [English]

Changes land use in the super-wet tropical rainforest area has resulted in changes pattern of soil fauna food webs that show the diversity of ecosystems. Various soil biodiversity studies tend to prioritize the diversity of soil fauna, without examining how changes in the pattern of food flow are running. The results showed that the abundance of the highest number of functional individuals of soil fauna in each type of land was predator. The diversity of functional types of soil fauna in forest and mixed gardens is also dominated by predators and on open area types and monoculture gardens dominated by herbivorees. While the parasitoid and detritivore groups were spread evenly on each type of land. This shows that the pattern of food webs in each land type of super wet tropical rainforest area reaches a balance in the type of forest and mixed gardens and begins to be disrupted in open area and monoculture gardens. The highest trophic level of food webs is the main controller of ecosystem balance. Changes in vegetation type of land in super wet tropical rain forest area will cause fragmentation of functional habitat of soil fauna which causes imbalance of energy flow in food webs.


Download data is not yet available.


Hansen R.A., Diversity in the decomposing landscape, in: Coleman D.C., Hendrix P.F. (Eds.), Invertebrates as webmasters in ecosystems, CABI Press, Wallingford, U.K., 2000, 203–219. DOI:

Duffy, J. E., Carinele, B. J., France, K. E., Mcintyre, P. B., Thebault, E. & Loreau, M, The functional role of biodiversity in ecosystems: incorporating trophic complexity. Ecology Letters, 10, 2007, 522–538. DOI:

de Vries, F.T., Thébault, E., Liiri, M., Birkhofer, K., Tsiafouli, M.A., Bjørnlund, L., Jørgensen, H.B., Brady, M.V., Christensen, S., de Ruiter, P.C., d'Hertefeldt, T., Frouz, J., Hedlund, K., Hemerik, L., Hol, W.H.G., Hotes, S., Mortimer, S.R., Setälä, H., Sgardelis, S.P., Uteseny, K., van der Putten, W.H., Wolters, V., Bardgett, R.D., Soil food web properties explain ecosystem services across European land use systems. PNAS, 110, 2013, 14296–14301. DOI:

Trap, J., Bonkowski, M., Plassard, C., Villenave, C., Blanchart, E., Ecological importance of soil bacterivores for ecosystem functions. Plant Soil, 2016, 1–24. DOI:

Briones, M.J.I, Soil fauna and soil functions: a jigsaw puzzle. Front. Environ. Sci, 2, 2014, 1- 22. DOI:

Wardle, D.A., Bardgett, R.D., Klironomos, J.N., Setala, H., van der Putten, W.H., Wall, D.H, Ecological linkages between aboveground and belowground biota. Science, 304, 2004, 1629-1633. DOI:

Cammeraat, E.L.H., Risch, A.C, The impact of ants on mineral soil properties and processes at different spatial scales. J. Appl. Entomo, 132, 2008, 285-294. DOI:

Hermansah, Nutrient Cycle and Its Relationship to Plant Species Diversity in West Sumatra Tropikal Rain Forest: Specific Plant Leaf Decomposition Rate. Research Report. Lembaga Penelitian Univ. Andalas. Padang, 2010.

Singh, J.S., Vimal C.P., D.P. Singh, Efficient soil microorganisms: A new dimension for sustainable agriculture and environmental development. Agriculture, Ecosystems and Environment, 140, 2011, 339–353. DOI:

Garbach, K., J.C Milder., M.Montenegro and D.S Karp., F.A.J DeClerck, Biodiversity and Ecosystem Services in Agroecosystems. Encyclopedia of Agriculture and Food Systems, 2, 2014, 21-39. DOI:

Berg, M.P., and Bengtsson, J, Temporal and spatial variability in soil food web structure. Oikos, 116, 2007, 1789-1804. DOI:

Holtkamp, R., Paul, K., Annemieke W., Stefan C., Wim H.,Putten, Peter C. de Ruiter, Soil food web structure during ecosystem development after land abandonment. applied soil ecology, 39, 2008, 23–34. DOI:

Gray, J, Major Paleozoic land plant evolutionary bio-events, Palaeogeogr. Palaeoclimatol. Palaeoecol, 104, 1993, 153 – 169. DOI:

Wolters V., Silver W.L., Bignell D.E., Coleman D.C., Lavelle P., van der Putten W.H., de Ruiter P.C., Rusek J., Wall D.H., Wardle D.A., Brussaard L., Dangerfield J.M., Brown V.K., Giller K.E., Hooper D.U., Sala O., Tiedje J.M., van Veen J.A, Effects of global changes on above- and belowground biodiversity in terrestrial ecosystems: implications for ecosystem functioning, BioSience, 50, 2000, 1089–1098.

Lavelle, P., Eric, B., Agnes, M., Serge, M.Alister, S, A Hierarchical Model for Decomposition in Terrestrial Ecosystems: Application to Soils of the Humid Tropiks. Biotropika, 25(2), 1993, 130-150. DOI:

Doran, J.W., M.R.Zeiss. Soil health and sustainability: managing the biotic component of soil quality, Applied Soil Ecology, 15, 2000, 3–11. DOI:

Blagodatsky, S & Smith, P, Soil physics meets soil biology: Towards better mechanistic prediction of greenhouse gas emissions from soil, Soil Biology and Biochemistry, 47, 2012, 78–92. DOI:

Wolters V., Silver W.L., Bignell D.E., Coleman D.C., Lavelle P., van der Putten W.H., de Ruiter P.C., Rusek J., Wall D.H., Wardle D.A., Brussaard L., Dangerfield J.M., Brown V.K., Giller K.E., Hooper D.U., Sala O., Tiedje J.M., van Veen J.A, Effects of global changes on above- and belowground biodiversity in terrestrial ecosystems: implications for ecosystem functioning, BioSience, 50, 2000, 1089–1098. DOI:[1089:EOGCOA]2.0.CO;2

Siqueira, G.M., Silva, E.F.F., Vidal-Válquez, E., Paz-González A, Multifractal and joint multifractal analysis of general soil properties and altitude along a transect. Biosyst Eng, 2017, In press. DOI:

Basso, F.C., Andreotti, M., Carvalho, M.P., Lodo, B.N, Relações entre produtividade de sorgo forrageiro e atributos físicos e teor de matéria orgânica de um Latossolo do Cerrado, Pesq Agropec Trop, 41, 2011, 135-44. DOI:

Loreau, M., Nicolas, M., Robert D. H, Meta‐ecosystems: a theoretical framework for a spatial ecosystem ecology, Ecology Letters, Vol.6, No.8, 2003, 673-679. DOI:

Dobson, A., Lodge, D., Alder, J., Cumming, G.S., Keymer, J. & McGlade, J, Habitat loss, trophic collapse, and the decline of ecosystem services, Ecology, 87, 2006, 1915–1924. DOI:[1915:HLTCAT]2.0.CO;2

Sergio, F., Newton, I., Marchesi, L. & Pedrini, P, Ecologically justified charisma: preservation of top predators delivers biodiversity conservation, J. Appl. Ecol, 43, 2006, 1049–1055 DOI:

Halpern, B.S., Borer, E.T., Seabloom, E.W. & Shurin, J.B, Predator effects on herbivora and plant stability, Ecol. Lett, 8, 2005, 189–194. DOI:

Griffin, J.M., Turner, M.G., Simard, M. Nitrogen cycling following mountain pine beetle disturbance in lodgepole pine forests of Greater Yellowstone. Forest Ecol. Manag 261, 2011, 1077–1089. DOI:

Raupp,M.J., Paula M., Shrewsbury,and Daniel A, Ecology of Herbivoraous Arthropods in Urban Landscapes. Annu. Rev. Entomol, 55, 2010, 19–38. DOI:

Tuomi, J., Haukioja, E., Honkanen, T., & Augner, M, Potential Benefits of Herbivora Behaviour Inducing Amelioration of Food-Plant Quality, Oikos, Vol. 70, No.1, 1994, 161 DOI:

Hafernick, J.E., Reinhard, H, Butterflies by the Bay: winners and losers in San Francisco’s urban jungle, Am. Butterflies, 3, 1995, 4–11

Berryman, A.A, The theory and classification of outbreaks. In Insect Outbreaks, ed. P Barbosa, JC Shulz, 1, 1987, 3–30 DOI:

Hanski, I, Nutritional ecology of dung and carrion feeding insects. In Nutritional Ecology of Insects, Mites, Spiders, and Related Invertebrates, ed. F. Slansky Jr. and J. G. Rodriguez, 1987, 837–85, New York: John Wiley and Sons.

Pramanik, K. Sarkar & V.C. Joy, Efficiency of detritivoree soil arthropods in mobilizing nutrients from leaf litter. Tropikal Ecology Vol.42, No.1, 2001, 51-58.

Lee, K.E, The role of soil fauna in nutrient cycling, In: G.K. Veeresh, D. Rajagopal & C.A. Viraktamath (eds.) Advances in Management and Conservation of Soil Fauna. Oxford & IBH Publ. Co. Pvt. Ltd., New Delhi, 1991, 465-472.

Wolters, V. & K. Ekschmitt, Gastropods, Isopods, Diplopods & Chilopods; Neglected groups of the decomposer food web.. In: G. Benckiser (ed.) Fauna in Soil Ecosystems. Marcel Dekker Inc., New York, 1997, 265-306.

Stevens, N.B., Syngeon M. R., Tamara C. O’. K and David A. J, The use of the biodiverse parasitoid Hymenoptera (Insecta) to assess arthropod diversity associated with topsoil stockpiled for future rehabilitation purposes on Barrow Island, Western Australia. Records of The Western Australian Museum, 2013, 355–374. DOI:

Fahrig, L, Effects of Habitat Fragmentation on Biodiversity. Annu. Rev. Ecol. Evol. Syst, 34, 2003, 487–515. DOI:

Swif, T.L & S.J. Hannon, Critical thresholds associated with habitat loss: a review of the concepts, evidence, and applications, Biol. Rev 85, 2010, 35–53 DOI:

Novotny, V., Miller, S.E., Hulcr, J., Drew, R.A., Basset, Y., Janda, M., Setliff, G.P., Darrow, K., Stewart, A.J., Auga, J., Isua, B., Molem, K., Manumbor, M., Tamtiai, E., Mogia, M., Weiblen, G.D, Low beta diversity of herbivoraous insects in tropikal forests. Nature 9, 448(7154), 2007, 692-695. DOI:

Meissner, K., Juntunen, A., Malmqvist, B & Muotka, T, Predator-prey interactions in a variable environment: responses of a caddis larva and its blackfly prey to variations in stream flow, Annales Zoologici Fennici, 46, 2009, 193–204. DOI:

Manlay, R., Kaïré, M., Masse, D., Chotte, J.L., Ciornei, G., Floret, C, Carbon, nitrogen and phosphorus allocation in agro-ecosystems of a West African savanna. I. The plant component under semi- permanent cultivation. Agriculture, Ecosystems and Environment, 88, 2002, 215-232. DOI:

Wardle, D.A, The influence of biotic interactions on soil biodiversity, Ecol. Lett 9, 2006, 870-886. DOI:

Whitham, T. G., W. P. Young, G. D. Martinsen, C. A. Gehring, J. A. Schweitzer, S. M. Schuster, G. M. Wimp, D. G. Fischer, J. K. Bailey, R. L. Lindroth, S. Woolbright, and C. R. Kuske, Community and ecosystem genetics: a consequence of the extended phenotype, Ecology 84, 2003, 559– 573. DOI:[0559:CAEGAC]2.0.CO;2

Kishimoto-Yamada, K., Hyodo, F., Matsuoka, M., Hashimoto, Y., Kon, M., Ochi, T., Yamane, S., Ishii, R., Itioka, T, Effects of remnant primary forests on ant and dung beetle species diversity in a secondary forest in Sarawak, Malaysia. J Ins Conserv 17, 2013, 591–605. DOI:

Matheson, C.D., Müller, G., Junnila, A., Vernon, K., Hausmann, A., Miller, M.A., Greenblatt, C. & Y. Schlein, A PCR Method for Detection of Plant Meals from the Gut of Insects. Organisms, Diversity & Evolution 7, 2008, 294–303 DOI:

Ibanez, S., Manneville, O., Miquel, C., Taberlet, P., Valentini, A., Aubert, S., Coissac, E., Colace, M.P., Duparc, Q., Lavorel, S., Moretti, M, Plant functional traits reveal the relative contribution of habitat and food preferences to the diet of grasshoppers. Oecologia, 173, 2013, 1459-1470. DOI:

Farrel, B.D. 1998. Inordinate Fondness" Explained: Why Are There So Many Beetles?. Science, Vol.281, No.5376, 1998, 555-559.

van Nouhuys, S., Hanski, I, Multitrophic interactions in space: metacommunity dynamics in fragmented landscapes. Cambridge University Press, 2002, 124-147 DOI:

Krivan, V, Competitive coexistence caused by adaptive predators, Evol. Ecol. Res 5, 2003, 1163–1182.

Pollierer, M.M., Langel, R., Scheu, S. & Maraun, M, Compartmentalization of the soil animal food web as indicated by dual analysis of sTabel isotope ratios (15N ⁄ 14N and 13C ⁄ 12C), Soil Biol Biochem 41, 2009, 1221–1226. DOI:

Schmitz, O. J, Effects of Predator Hunting Mode on Grassland Ecosystem Function. Science, Vol. 319, No.5865, 2008, 952-954.

Gerben, J.M., L.W. Kok., C. M. J. Bloemhard.,Arne, J, Generalist predatory bugs control aphids in sweet pepper. Integrated control in protected crops temperate climate IOBC/wprs Bulletin, 68, 2011, 115-118.

Cakmak, I., Arne, J., Maurice, W., Sabelis., Huseyin, B, Biological control of an acarine pest by single and multiple natural enemies, Biological Control, 50, 2009, 60–65. DOI:

Roques, A., Rabitsch, W., Rasplus, J-Y., Lopez-Vaamonde, C., Nentwig, W., Kenis, M, Alien terrestrial invertebrates of Europe. In: DAISIE (ed) Handbook of alien species in Europe. Springer,Dordrecht, Netherlands, 2009, 63–79 DOI:

Boyero, L., Ramı´rez, A., Dudgeon, E. & Pearson, R.G, Are tropikal streams really different?. J. N. Am. Benthol. Soc., 28, 2009, 397–403. DOI:

Dudgeon, D., A.H. Arthington, M.O. Gessner, Z. Kawabata., D. Knowler., C. Lévêque., R.J. Naiman., A-H APrieur-Richard., D. Soto., M.L.J. Stiassny and C.A. Sullivan, Freshwater biodiversity: importance, status and conservation challenges, Biological Reviews of the Cambridge Philosophical Society, 8, 2006, 163-182. DOI:

Ananthakrishnan, T.N, Forest Litter Insect Community. Biology and Chemical Ecology. Oxford and IBH Publ. Co. Pvt. Ltd., 1996, New Delhi.

Farwig, N., Bailey, D., Bochud, E., Herrmann, J.D., Kindler, E., Reusser, N., Schüepp, C., Schmidt-Entling, M.H, Isolation from forest reduces pollination, seed predation and insect scavenging in Swiss farmland, Landsc Ecol, 24, 2009, 919–927. DOI:

Rabieh, M., Mahmoud, A., Touraj, A., Meisam,T., E. P. Nartshuk, Checklist of Grass Flies (Diptera: Chloropidae) of Markazi province, Iran. Int. J. Dipterol. Res, Vol. 23, No.2, 2012, 95–101.

Boivin, N.L., Zeder, M.A., Fuller, D.Q. 2016. Ecological consequences of human niche construction: examining long-term anthropogenic shaping of global species distributions. Proc. Natl. Acad. Sci. U. S. A, Vol.113, No.23, 2016, 1753–1773.

Stoate, C., Boatman, N. D., Borralho, R. J., Carvalho, R. C., de Snoo, G. R., & Eden, P, Ecological impacts of arable intensification in Europe. Journal of Environmental Management, 63, 2001, 337–365. DOI:




How to Cite

Marsandi, F., Hermansah, Agustian, & Yasin, S. (2019). SOIL FAUNA FOOD WEB IN SEVERAL LAND USE TYPES OF SUPER WET TROPICAL RAIN FOREST AREA. International Journal of Research -GRANTHAALAYAH, 7(5), 327–340.