ANTIMICROBIAL RESISTANCE: REVIEW

Authors

  • Daba Gudata Jimma University College of Agriculture and Veterinary Medicine, School of Veterinary Medicine, Jimma, Ethiopia
  • Feyissa Begna Jimma University College of Agriculture and Veterinary Medicine, School of Veterinary Medicine, Jimma, Ethiopia

DOI:

https://doi.org/10.29121/granthaalayah.v6.i11.2018.1091

Keywords:

Antimicrobial, Health, Mechanism, Microorganism, Resistance, Threat

Abstract [English]

Antimicrobial resistance (AMR) is resistance of a microorganism to an antimicrobial that was originally effective for treatment of infections caused by it. Increasing clinical incidence of antimicrobial resistance is a major global health care issue and the situation is perhaps aggravated in developing countries. Although, AMR is a major health care issue, there is a shortage of documented information on it. Therefore, the aim of this paper is to review the causes or risk factors, problems, mechanisms and control of antimicrobial resistance. The resistance problem can be seen simplistically as an equation with two main components: the antibiotic or antimicrobial drug, which inhibits susceptible organisms and selects the resistant ones; and the genetic resistance determinant in microorganisms selected by the antimicrobial drug. Antimicrobial resistance is associated with high mortality rates and high medical costs and has a significant impact on the effectiveness of antimicrobial agents. To appreciate the mechanisms of antimicrobial resistance, it is important to understand how antimicrobial agents act. The resistance mechanisms therefore depend on which specific pathways are inhibited by the drugs and the alternative ways available for those pathways that the organisms can modify to get a way around in order to survive. A comprehensive strategy is necessary to address the challenges that accompany the rising threat of antimicrobial resistance. Special vigilance must now be paid to appropriate selection and timing of antimicrobial agents as a major force in reducing the development of antimicrobial resistance. Prevention and control of these infections will require new antimicrobial agents, prudent use of existing agents, new vaccines, and enhanced public health efforts to reduce transmission.

Downloads

Download data is not yet available.

References

Adekunle, O.O., 2012. Mechanisms of antimicrobial resistance in bacteria, general approach. International Journal of Pharma Medicine and Biological Sciences, 1(2): 166-187.

Adhikari, L., 2010. High-level aminoglycoside resistance and reduced susceptibility to vancomycin in nosocomial enterococci. Journal of global infectious diseases, 2(3): 231. DOI: https://doi.org/10.4103/0974-777X.68534

Alekshun, M.N. and Levy, S.B., 2007. Molecular mechanisms of antibacterial multidrug resistance. Cell, 128(6): 1037-1050. DOI: https://doi.org/10.1016/j.cell.2007.03.004

Baharoglu, Z., Garriss, G., Mazel, D., 2013. Multiple pathways of genome plasticity leading to development of antibiotic resistance. Antibiotics, 2(2): 288-315. DOI: https://doi.org/10.3390/antibiotics2020288

Baron, S., 1996. Protozoa: Structure, Classification, Growth, and Development Medical Microbiology. University of Texas Medical Branch at Galveston.

Bennett, P.M., 2008. Plasmid encoded antibiotic resistance: acquisition and transfer of antibiotic resistance genes in bacteria. British journal of pharmacology, 153(1): 347-357. DOI: https://doi.org/10.1038/sj.bjp.0707607

Bozdogan, B., Esel, D., Whitener, C., Browne, F.A., Appelbaum, P.C., 2003. Antibacterial susceptibility of a vancomycin-resistant Staphylococcus aureus strain isolated at the Hershey Medical Center. Journal of Antimicrobial Chemotherapy, 52(5): 864-868. DOI: https://doi.org/10.1093/jac/dkg457

Bugg, T.D., Wright, G.D., Dutka-Malen, S., Arthur, M., Courvalin, P., Walsh, C.T., 1991. Molecular basis for vancomycin resistance in Enterococcus faecium BM4147: biosynthesis of a depsipeptide peptidoglycan precursor by vancomycin resistance proteins VanH and VanA. Biochemistry, 30(43): 10408-15. DOI: https://doi.org/10.1021/bi00107a007

Byarugaba, D.K., 2004. Antimicrobial resistance in developing countries and responsible risk factors. International journal of antimicrobial agents, 24(2): 105-110. DOI: https://doi.org/10.1016/j.ijantimicag.2004.02.015

Chatterji, M., Unniraman, S., Mahadevan, S., Nagaraja, V., 2001. Effect of different classes of inhibitors on DNA gyrase from Mycobacterium smegmatis. Journal of Antimicrobial Chemotherapy, 48(4): 479-485. DOI: https://doi.org/10.1093/jac/48.4.479

Chen, A.Y. and Liu, L.F., 1994. DNA topoisomerases: essential enzymes and lethal targets. Annual review of pharmacology and toxicology, 34(1): 191-218. DOI: https://doi.org/10.1146/annurev.pa.34.040194.001203

Coffey, T.J., Dowson, C.G., Daniels M., Spratt, B.G., 1995. Genetics and molecular biology of β-lactam-resistant pneumococci. Microbial Drug Resistance, 1(1): 29-34. DOI: https://doi.org/10.1089/mdr.1995.1.29

Cohen, M.L., 2000. Changing patterns of infectious disease. Nature, 406(6797): 762. DOI: https://doi.org/10.1038/35021206

Collin, F., Karkare, S., Maxwell, A., 2011. Exploiting bacterial DNA gyrase as a drug target: current state and perspectives. Applied Microbiology and Biotechnology, 92(3): 479-497. DOI: https://doi.org/10.1007/s00253-011-3557-z

Conly, J., 2002. Antimicrobial resistance in Canada. Canadian Medical Association Journal, 167(8): 885-891.

Cooper, M.A., Fiorini, M.T., Abell, C., Williams, D.H., 2000. Binding of vancomycin group antibiotics to D-alanine and D-lactate presenting self-assembled monolayers. Bioorganic & medicinal chemistry, 8(11): 2609-2616. DOI: https://doi.org/10.1016/S0968-0896(00)00184-X

Donkor, E.S. and Badoe, E.V., 2014. Insights into pneumococcal pathogenesis and antibiotic resistance. Advances in Microbiology, 4(10): 627. DOI: https://doi.org/10.4236/aim.2014.410069

Džidić, S., Šušković, J., Kos, B., 2008. Antibiotic resistance mechanisms in bacteria: biochemical and genetic aspects. Food Technology & Biotechnology, 46(1):11-21.

Ehmann, D.E. and Lahiri, S.D., 2014. Novel compounds targeting bacterial DNA topoisomerase/DNA gyrase. Current opinion in pharmacology, 18: 76-83. DOI: https://doi.org/10.1016/j.coph.2014.09.007

Erill, I., Campoy, S., Mazon, G., Barbe, J., 2006. Dispersal and regulation of an adaptive mutagenesis cassette in the bacteria domain. Nucleic acids research, 34(1): 66-77. DOI: https://doi.org/10.1093/nar/gkj412

Ferguson, D., Cahill, O.J., Quilty, B., 2007. Phenotypic, molecular and antibiotic resistance profiling of nosocomial Pseudomonas aeruginosa strains isolated from two Irish Hospitals. Journal of Medical and Biological Science, 1(1): 1-15.

Ferri, M., Ranucci, E., Romagnoli, P., Giaccone, V., 2017. Antimicrobial resistance: a global emerging threat to public health systems. Critical reviews in food science and nutrition, 57(13): 2857-2876. DOI: https://doi.org/10.1080/10408398.2015.1077192

Getahun, B., Ameni, G., Medhin, G., Biadgilign, S., 2013. Treatment outcome of tuberculosis patients under directly observed treatment in Addis Ababa, Ethiopia. The Brazilian Journal of Infectious Diseases, 17(5): 521-528. DOI: https://doi.org/10.1016/j.bjid.2012.12.010

Giedraitienė, A., Vitkauskienė, A., Naginienė, R., Pavilonis, A., 2011. Antibiotic resistance mechanisms of clinically important bacteria. Medicina, 47(3): 19. DOI: https://doi.org/10.3390/medicina47030019

Guilhelmelli, F., Vilela, N., Albuquerque, P., Derengowski, L., Silva-Pereira, I., Kyaw, C., 2013. Antibiotic development challenges: the various mechanisms of action of antimicrobial peptides and of bacterial resistance. Frontiers in microbiology, 4: 353. DOI: https://doi.org/10.3389/fmicb.2013.00353

Happi, C.T., Gbotosho, G.O., Folarin, O.A., Akinboye, D.O., Yusuf, B.O., Ebong, O.O., Sowunmi, A., Kyle, D.E., Milhous, W., Wirth, D.F., Oduola, A.M.J., 2005. Polymorphisms in Plasmodium falciparum dhfr and dhps genes and age related in vivo sulfadoxine–pyrimethamine resistance in malaria-infected patients from Nigeria. Acta tropica, 95(3): 183-193. DOI: https://doi.org/10.1016/j.actatropica.2005.06.015

Hart, C.A. and Kariuki, S., 1998. Antimicrobial resistance in developing countries. BMJ: British Medical Journal, 317(7159): 647. DOI: https://doi.org/10.1136/bmj.317.7159.647

Hawkey, P.M., 2008. Molecular epidemiology of clinically significant antibiotic resistance genes. British journal of pharmacology, 153(1): 406-413. DOI: https://doi.org/10.1038/sj.bjp.0707632

Hidron, A.I., Edwards, J.R., Patel, J., Horan, T.C., Sievert, D.M., Pollock, D.A., Fridkin, S.K., 2008. Antimicrobial-resistant pathogens associated with healthcare-associated infections: annual summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2006–2007. Infection Control & Hospital Epidemiology, 29(11): 996-1011. DOI: https://doi.org/10.1086/591861

Hooper, D.C., 2001. Mechanisms of action of antimicrobials: focus on fluoroquinolones. Clinical Infectious Diseases, 32(1): 9-15. DOI: https://doi.org/10.1086/319370

Hunter, P.R., Wilkinson, D.C., Catling, L.A., Barker, G.C., 2008. Meta-analysis of experimental data concerning antimicrobial resistance gene transfer rates during conjugation. Applied and environmental microbiology, 74(19): 6085-90. DOI: https://doi.org/10.1128/AEM.01036-08

Infectious Diseases Society of America (IDSA), 2011. Combating antimicrobial resistance: policy recommendations to save lives. Clinical Infectious Diseases, 52(5): 397-428. DOI: https://doi.org/10.1093/cid/cir153

Jacoby, G.A. and Munoz-Price, L.S., 2005. The new β-lactamases. New England Journal of Medicine, 352(4): 380-391. DOI: https://doi.org/10.1056/NEJMra041359

Kharb, R., Shahar Yar, M., C Sharma, P., 2011. New insights into chemistry and anti-infective potential of triazole scaffold. Current medicinal chemistry, 18(21): 3265-3297. DOI: https://doi.org/10.2174/092986711796391615

Kim, Y.H., Cha, C.J. and Cerniglia, C.E., 2002. Purification and characterization of an erythromycin esterase from an erythromycin-resistant Pseudomonas sp. FEMS microbiology letters, 210(2): 239-244. DOI: https://doi.org/10.1111/j.1574-6968.2002.tb11187.x

Kohanski, M.A., Dwyer, D.J., Collins, J.J., 2010. How antibiotics kill bacteria: from targets to networks. Nature Reviews Microbiology, 8(6): 423. DOI: https://doi.org/10.1038/nrmicro2333

Kosowska, K., Jacobs, M.R., Bajaksouzian, S., Koeth, L., Appelbaum, P.C., 2004. Alterations of penicillin-binding proteins 1A, 2X, and 2B in Streptococcus pneumoniae isolates for which amoxicillin MICs are higher than penicillin MICs. Antimicrobial agents and chemotherapy, 48(10): 4020-4022. DOI: https://doi.org/10.1128/AAC.48.10.4020-4022.2004

Kotra, L.P. and Mobashery, S., 1998. β-Lactam antibiotics, β-lactamases and bacterial resistance. Bulletin de l'Institut Pasteur, 96(3), pp.139-150. DOI: https://doi.org/10.1016/S0020-2452(98)80009-2

Krupovič, M., Daugelavičius, R., Bamford, D.H., 2007. Polymyxin B induces lysis of marine pseudoalteromonads. Antimicrobial agents and chemotherapy, 51(11): 3908-3914. DOI: https://doi.org/10.1128/AAC.00449-07

Kumar, A. and Schweizer, H.P., 2005. Bacterial resistance to antibiotics: active efflux and reduced uptake. Advanced drug delivery reviews, 57(10): 1486-1513. DOI: https://doi.org/10.1016/j.addr.2005.04.004

Lambert, P.A., 2002. Mechanisms of antibiotic resistance in Pseudomonas aeruginosa. Journal of the royal society of medicine, 95(41):22.

Lambert, P.A., 2005. Bacterial resistance to antibiotics: modified target sites. Advanced drug delivery reviews, 57(10): 1471-1485. DOI: https://doi.org/10.1016/j.addr.2005.04.003

Langton, K.P., Henderson, P.J., Herbert, R.B., 2005. Antibiotic resistance: multidrug efflux proteins, a common transport mechanism?. Natural product reports, 22(4): 439-451. DOI: https://doi.org/10.1039/b413734p

Laxminarayan, R., Duse, A., Wattal, C., Zaidi, A.K., Wertheim, H.F., Sumpradit, N., Vlieghe, E., Hara, G.L., Gould, I.M., Goossens, H., Greko, C., 2013. Antibiotic resistance—the need for global solutions. The Lancet infectious diseases, 13(12): 1057-1098. DOI: https://doi.org/10.1016/S1473-3099(13)70318-9

Leach, K.L., Swaney, S.M., Colca, J.R., McDonald, W.G., Blinn, J.R., Thomasco, L.M., Gadwood, R.C., Shinabarger, D., Xiong, L., Mankin, A.S., 2007. The site of action of oxazolidinone antibiotics in living bacteria and in human mitochondria. Molecular cell, 26(3): 393-402. DOI: https://doi.org/10.1016/j.molcel.2007.04.005

Levy, S.B. and Marshall, B., 2004. Antibacterial resistance worldwide: causes, challenges and responses. Nature medicine, 10(12): 122. DOI: https://doi.org/10.1038/nm1145

Levy, S.B., 2002. Factors impacting on the problem of antibiotic resistance. Journal of Antimicrobial Chemotherapy, 49(1): 25-30. DOI: https://doi.org/10.1093/jac/49.1.25

Loeffler, J. and Stevens, D.A., 2003. Antifungal drug resistance. Clinical infectious diseases, 36(1):31-41. DOI: https://doi.org/10.1086/344658

Martinez, J.L. and Baquero, F., 2000. Mutation frequencies and antibiotic resistance. Antimicrobial agents and chemotherapy, 44(7): 771-777. DOI: https://doi.org/10.1128/AAC.44.7.1771-1777.2000

McManus, M.C., 1997. Mechanisms of bacterial resistance to antimicrobial agents. American Journal of Health-System Pharmacy, 54(12): 1420-1433. DOI: https://doi.org/10.1093/ajhp/54.12.1420

Misra, R., Morrison, K.D., Cho, H.J., Khuu, T., 2015. Importance of real-time assays to distinguish multidrug efflux pump inhibiting and outer membrane destabilizing activities in Escherichia coli. Journal of bacteriology. DOI: https://doi.org/10.1128/JB.02456-14

Nagai, K., Davies, T.A., Jacobs, M.R., Appelbaum, P.C., 2002. Effects of amino acid alterations in penicillin-binding proteins (PBPs) 1a, 2b, and 2x on PBP affinities of penicillin, ampicillin, amoxicillin, cefditoren, cefuroxime, cefprozil, and cefaclor in 18 clinical isolates of penicillin-susceptible, -intermediate, and-resistant pneumococci. Antimicrobial agents and chemotherapy, 46(5): 1273-1280. DOI: https://doi.org/10.1128/AAC.46.5.1273-1280.2002

Nagarajan, R., 1991. Antibacterial activities and modes of action of vancomycin and related glycopeptides. Antimicrobial agents and chemotherapy, 35(4): 605. DOI: https://doi.org/10.1128/AAC.35.4.605

Nikaido, H., 1998. Multiple antibiotic resistance and efflux. Current opinion in microbiology, 1(5): 516-523. DOI: https://doi.org/10.1016/S1369-5274(98)80083-0

Okeke, I.N., Laxminarayan, R., Bhutta, Z.A., Duse, A.G., Jenkins, P., O'Brien, T.F., Pablos-Mendez, A., Klugman, K.P., 2005. Antimicrobial resistance in developing countries. Part I: recent trends and current status. The Lancet infectious diseases, 5(8): 481-493. DOI: https://doi.org/10.1016/S1473-3099(05)70189-4

Paphitou, N.I., 2013. Antimicrobial resistance: action to combat the rising microbial challenges. International journal of antimicrobial agents, 42: 25-28. DOI: https://doi.org/10.1016/j.ijantimicag.2013.04.007

Raghunath, D., 2008. Emerging antibiotic resistance in bacteria with special reference to India. Journal of biosciences, 33(4): 593-603. DOI: https://doi.org/10.1007/s12038-008-0077-9

Reinert, R.R., Wild, A., Appelbaum, P., Lütticken, R., Cil, M.Y., Al-Lahham, A., 2003. Ribosomal mutations conferring resistance to macrolides in Streptococcus pneumoniae clinical strains isolated in Germany. Antimicrobial agents and chemotherapy, 47(7): 2319-2322. DOI: https://doi.org/10.1128/AAC.47.7.2319-2322.2003

Roberts, M.C., Sutcliffe, J., Courvalin, P., Jensen, L.B., Rood, J., Seppala, H., 1999. Nomenclature for macrolide and macrolide-lincosamide-streptogramin B resistance determinants. Antimicrobial agents and chemotherapy, 43(12): 2823-2830. DOI: https://doi.org/10.1128/AAC.43.12.2823

Spicknall, I.H., Foxman, B., Marrs, C.F., Eisenberg, J.N., 2013. A modeling framework for the evolution and spread of antibiotic resistance: literature review and model categorization. American journal of epidemiology, 178(4): 508-520. DOI: https://doi.org/10.1093/aje/kwt017

Strohl, W.R., 2004. Antimicrobials. In Microbial diversity and bioprospecting. American Society of Microbiology. pp. 336-355. DOI: https://doi.org/10.1128/9781555817770.ch31

Tanwar, J., Das, S., Fatima, Z., Hameed, S., 2014. Multidrug resistance: an emerging crisis. Interdisciplinary perspectives on infectious diseases, 2014. DOI: https://doi.org/10.1155/2014/541340

Tenover, F.C., 2006. Mechanisms of antimicrobial resistance in bacteria. American journal of infection control, 34(5):3-10. DOI: https://doi.org/10.1016/j.ajic.2006.05.219

Vannuffel, P. and Cocito, C., 1996. Mechanism of action of streptogramins and macrolides. Drugs, 51(1): 20-30. DOI: https://doi.org/10.2165/00003495-199600511-00006

Vannuffel, P., Di Giambattista, M., Morgan, E.A., Cocito, C., 1992. Identification of a single base change in ribosomal RNA leading to erythromycin resistance. Journal of Biological Chemistry, 267(12): 8377-8382.

Wang, G.E. and Taylor, D.E., 1998. Site-Specific Mutations in the 23S rRNA Gene of Helicobacter pylori Confer Two Types of Resistance to Macrolide-Lincosamide-Streptogramin B Antibiotics. Antimicrobial agents and chemotherapy, 42(8): 1952-1958. DOI: https://doi.org/10.1128/AAC.42.8.1952

Weisblum, B., 1995. Erythromycin resistance by ribosome modification. Antimicrobial agents and chemotherapy, 39(3): 577. DOI: https://doi.org/10.1128/AAC.39.3.577

Wilke, M.S., Lovering, A.L., Strynadka, N.C., 2005. β-Lactam antibiotic resistance: a current structural perspective. Current opinion in microbiology, 8(5): 525-533. DOI: https://doi.org/10.1016/j.mib.2005.08.016

Williams, D.H., Maguire, A.J., Tsuzuki, W., West well, M.S., 1998. An analysis of the origins of a cooperative binding energy of dimerization. Science, 280(5364): 711-714. DOI: https://doi.org/10.1126/science.280.5364.711

Wright, G.D., 2005. Bacterial resistance to antibiotics: enzymatic degradation and modification. Advanced drug delivery reviews, 57(10): 1451-1470. DOI: https://doi.org/10.1016/j.addr.2005.04.002

Yoneyama, H. and Katsumata, R., 2006. Antibiotic resistance in bacteria and its future for novel antibiotic development. Bioscience, biotechnology, and biochemistry, 70(5): 1060-1075. DOI: https://doi.org/10.1271/bbb.70.1060

Downloads

Published

2018-11-30

How to Cite

Gudata, D., & Begna, F. (2018). ANTIMICROBIAL RESISTANCE: REVIEW. International Journal of Research -GRANTHAALAYAH, 6(11), 77–93. https://doi.org/10.29121/granthaalayah.v6.i11.2018.1091