EFFECT OF SILICON APPLICATION ONTALIOUINE CROCUS SATIVUS (L) CULTIVATION UNDERSALT STRESS

Authors

  • ahimiJamila Laboratories for Agrophysiology and Post Harvest - Research Unit for Natural Resources and Terroir Products (UR RN & PDT) INRA- CRRA- Agadir 2 Team: Materials, Catalysis and Valorization of Natural Resources, Ibn-Zohr University; Department of Chemistry, FSA. Agadir
  • Bouzoubaâ Zakia Team: Materials, Catalysis and Valorization of Natural Resources, Ibn-Zohr University; Department of Chemistry, FSA. Agadir
  • AchemchemFouad Laboratories for Agrophysiology and Post Harvest - Research Unit for Natural Resources and Terroir Products (UR RN & PDT) INRA- CRRA- Agadir
  • SaffajNabil Laboratories for Agrophysiology and Post Harvest - Research Unit for Natural Resources and Terroir Products (UR RN & PDT) INRA- CRRA- Agadir
  • Mamouni Rachid Laboratories for Agrophysiology and Post Harvest - Research Unit for Natural Resources and Terroir Products (UR RN & PDT) INRA- CRRA- Agadir

DOI:

https://doi.org/10.29121/granthaalayah.v6.i9.2018.1233

Keywords:

Saffron Crocus Sativus L, Salinity, Silicon, Stigma, Anti-Radical Activity

Abstract [English]

This study investigates the effect of silicon (Si) application on saffron plantgrown under salt stress. Therefore; Saffron, Crocus sativus L. was grown in different treatments of NaCl in presence and absence of 1 mM of silicon in its soluble form, orthosilicic acid(H4SiO4). Our results exhibited that the application of silicon enhanced the physiologicalstudied parameters and morphological attributes of saffron stigmas; the length of stigma improvement was 29% and 41,4% in saline treatments of 50 mM and 100mM respectively in presence of silicon compared to the same treatments without silicon, the dry weight of the stigma boosted by 40% for the treatment of 50mM of NaCl and 20% for 100 mM treatments compared to the same treatments in absence ofsilicon. Siliconaddition ameliorated RWC, total phenolic,anti-radical leaves activity and K+ contents and K+/Na+ ration in both roots and leaves. These results suggested that Si application enhanced saffron plant and improved the weight and length of saffron stigma.

Downloads

Download data is not yet available.

References

Abbas, T., Balal, R. M., Shahid, M. A., Pervez, M. A., Ayyub, C. M., Aqueel, M. A., &Javaid, M. M. (2015). Silicon-induced alleviation of NaCl toxicity in okra (Abelmoschus esculentus) is associated with enhanced photosynthesis, osmoprotectants and antioxidant metabolism. Acta Physiologiae Plantarum, 37(2). https://doi.org/10.1007/s11738-014-1768-5 DOI: https://doi.org/10.1007/s11738-014-1768-5

Ahmed, M., Fayyaz-ul-Hassen, & Khurshid, Y. (2011). Does silicon and irrigation have impact on drought tolerance mechanism of sorghum? Agricultural Water Management, 98(12), 1808–1812. https://doi.org/10.1016/j.agwat.2011.07.003 DOI: https://doi.org/10.1016/j.agwat.2011.07.003

Aït Oubahou Ahmed; El Otmani Mohamed. (2002). La culture du Safran, (37), 77–80.

Ali, M. A., Lee, C. H., Kim, P. J., & Rice, P. (2008). Effect of silicate fertilizer on reducing methane emission during rice cultivation, 597–604. https://doi.org/10.1007/s00374-007-0243-5 DOI: https://doi.org/10.1007/s00374-007-0243-5

Ashraf, M., Akram, N. A., Arteca, R. N., & Foolad, M. R. (2010). The physiological, biochemical and molecular roles of brassinosteroids and salicylic acid in plant processes and salt tolerance. Critical Reviews in Plant Sciences, 29(3), 162–190.

https://doi.org/10.1080/07352689.2010.483580 DOI: https://doi.org/10.1080/07352689.2010.483580

Ashraf, M., & Foolad, M. R. (2007). Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany, 59(2), 206–216.

https://doi.org/10.1016/j.envexpbot.2005.12.006 DOI: https://doi.org/10.1016/j.envexpbot.2005.12.006

Aung, H. H., Wang, C. Z., Ni, M., Fishbein, A., Mehendale, S. R., Xie, J. T., & Yuan, C. S. (2009). NIH Public Access, 29(3), 175–180.

Aytekin, A., & Acikgoz, A. O. (2008). Hormone and microorganism treatments in the cultivation of saffron (Crocus Sativus L.) plants. Molecules, 13(5), 1135–1147.

https://doi.org/10.3390/molecules13051135 DOI: https://doi.org/10.3390/molecules13051135

Balakhnina, T., & Borkowska, A. (2013). Effects of silicon on plant resistance to environmental stresses: review. International Agrophysics, 27(2), 225–232. https://doi.org/10.2478/v10247-012-0089-4 DOI: https://doi.org/10.2478/v10247-012-0089-4

Bouzoubaâ, Z. (1991). Etude des rôles de la silice dans les mécanismes de tolérance à la sécheresse chez quelques espèces de gr ande culture. PhD thesis, U.S.T.L. Montpellier II.160p.

Bouzoubaâ, Z. (2007). Effet du Silicium sur l’Amélioration de la Germination de l’Arganier, Argania spinosa (L). Skeels, en conditions de Salinité et de Déficit Hydrique. Ann de La Recherche Forestière Au Maroc., 38, 35.

Charu, S., Vibhuti, Kiran, B., & Surendra Singh, B. (2014). Influence of boron on seed germination and seedling growth of wheat (Triticum aestivum L.). African Journal of Plant Science, 8(2), 133–139. https://doi.org/10.5897/AJPS2014.1148 DOI: https://doi.org/10.5897/AJPS2014.1148

Dany, M. (2013). Etude du transport des sucres dans les racines d ’ Arabidopsis thaliana au cours de son cycle de développement et en réponse à un stress osmotique.

Fahimi, J., Bouzoubaâ, Z., Achemchem, F., Saffaj, N., & and Mamouni, R. (2017). Effect of silicon on improving salinity tolerance of Taliouine Crocus sativus L.. Acta Hort. (ISHS) 1184:219-228, (https://doi.org/10.17660/ActaHortic.2017.1184.31), 1184:219-228.

Garg, N., & Bhandari, P. (2016). Interactive effects of silicon and arbuscular mycorrhiza in modulating ascorbate-glutathione cycle and antioxidant scavenging capacity in differentially salt-tolerant Cicer arietinum L. genotypes subjected to long-term salinity. Protoplasma, 253(5), 1325–1345. https://doi.org/10.1007/s00709-015-0892-4 DOI: https://doi.org/10.1007/s00709-015-0892-4

Geromichalos, G. D., Lamari, F. N., Papandreou, M. A., Trafalis, D. T., Margarity, M., Papageorgiou, A., & Sinakos, Z. (2012). Saffron as a source of novel acetylcholinesterase inhibitors: Molecular docking and in vitro enzymatic studies. Journal of Agricultural and Food Chemistry, 60(24), 6131–6138. https://doi.org/10.1021/jf300589c DOI: https://doi.org/10.1021/jf300589c

Hamrouni, L., Hanana, M., Abdelly, C., & Ghorbel, A. (2011). Exclusion du chlorure et inclusion du sodium: Deux mécanismes concomitants de tolérance à la salinité chez la vigne sauvage Vitis vinifera subsp. sylvestris (var. “séjnène”). Biotechnology, Agronomy and Society and Environment, 15(3), 387–400.

Hodson, M. J., White, P. J., Mead, A., & Broadley, M. R. (2005). Phylogenetic variation in the silicon composition of plants. Annals of Botany, 96(6), 1027–1046.

https://doi.org/10.1093/aob/mci255 DOI: https://doi.org/10.1093/aob/mci255

Hossain, M. A., Kalbani, M. S. A. Al, Farsi, S. A. J. Al, Weli, A. M., & Al-Riyami, Q. (2014). Comparative study of total phenolics, flavonoids contents and evaluation of antioxidant and antimicrobial activities of different polarities fruits crude extracts of Datura metel L. Asian Pacific Journal of Tropical Disease, 4(5), 378–383. https://doi.org/10.1016/S2222-1808(14)60591-0 DOI: https://doi.org/10.1016/S2222-1808(14)60591-0

Hosseinzadeh, H., Modaghegh, M. H., & Saffari, Z. (2009). Crocus sativus L. (saffron) extract and its active constituents (crocin and safranal) on ischemia-reperfusion in rat skeletal muscle. Evidence-Based Complementary and Alternative Medicine, 6(3), 343–350.

https://doi.org/10.1093/ecam/nem125 DOI: https://doi.org/10.1093/ecam/nem125

Hosseinzadeh, H., Sadeghnia, H. R., Ghaeni, F. A., Motamedshariaty, V. S., & Mohajeri, S. A. (2012). Effects of saffron (Crocus sativus L.) and its active constituent, crocin, on recognition and spatial memory after chronic cerebral hypoperfusion in rats. Phytotherapy Research, 26(3), 381–386. https://doi.org/10.1002/ptr.3566 DOI: https://doi.org/10.1002/ptr.3566

Hosseinzadeh, H., & Younesi, H. M. (2002). stigma and petal extracts in mice, 8, 1–8.

Jamil, A., Riaz, S., Ashraf, M., & Foolad, M. R. (2011). Gene Expression Profiling of Plants under Salt Stress. Critical Reviews in Plant Sciences, 30(5), 435–458.

https://doi.org/10.1080/07352689.2011.605739 DOI: https://doi.org/10.1080/07352689.2011.605739

Kianbakht, S., & Hajiaghaee, R. (2011). Anti-hyperglycemic effects of saffron and its active constituents, crocin and safranal, in alloxan-induced diabetic rats. Journal of Medicinal Plants, 10(39), 82–89.

Korndörfer, G. H. ., & Lepsch, I. (2001). Chapter 7 Effect of silicon on plant growth and crop yield. Studies in Plant Science, 8(C), 133–147. https://doi.org/10.1016/S0928-3420(01)80011-2 DOI: https://doi.org/10.1016/S0928-3420(01)80011-2

Lage, M., & Cantrell, C. L. (2009). Quantification of saffron (Crocus sativus L.) metabolites crocins, picrocrocin and safranal for quality determination of the spice grown under different environmental Moroccan conditions. Scientia Horticulturae, 121(3), 366–373.

https://doi.org/10.1016/j.scienta.2009.02.017 DOI: https://doi.org/10.1016/j.scienta.2009.02.017

Liang, Y., Sun, W., Zhu, Y.-G., & Christie, P. (2007). Mechanisms of silicon-mediated alleviation of abiotic stresses in higher plants: A review. Environmental Pollution, 147(2), 422–428.

https://doi.org/10.1016/j.envpol.2006.06.008 DOI: https://doi.org/10.1016/j.envpol.2006.06.008

Ma, J. F. (2004). Characterization of the Silicon Uptake System and Molecular Mapping of the Silicon Transporter Gene in Rice. Plant Physiology, 136(2), 3284–3289.

https://doi.org/10.1104/pp.104.047365 DOI: https://doi.org/10.1104/pp.104.047365

Ma, J. F., Yamaji, N., & Mitani-Ueno, N. (2011). Transport of silicon from roots to panicles in plants. Proceedings of the Japan Academy. Series B, Physical and Biological Sciences, 87(7), 377–385. https://doi.org/10.2183/pjab.87.377 DOI: https://doi.org/10.2183/pjab.87.377

Manivannan, A., Soundararajan, P., Muneer, S., Ko, C. H., & Jeong, B. R. (2016). Silicon mitigates salinity stress by regulating the physiology, antioxidant enzyme activities, and protein expression in Capsicum annuum “Bugwang.” BioMed Research International, 2016.

https://doi.org/10.1155/2016/3076357 DOI: https://doi.org/10.1155/2016/3076357

Matichenkov V. and Bocharnikova E. (2004). Si in horticultural industry, in Production Practices and Quality Assessment of Food Crops. Production Practices and Quality Assessment of Food. Retrieved from http://link.springer.com/chapter/10.1007/1-4020-2536-X_9

McElrone, A. J., Pockman, W. T., Martinez-Vilalta, J., & Jackson, R. B. (2004). Variation in xylem structure and function in stems and roots of trees to 20 m depth. New Phytologist, 163(3), 507–517. https://doi.org/10.1111/j.1469-8137.2004.01127.x DOI: https://doi.org/10.1111/j.1469-8137.2004.01127.x

Moussa, H. R. (2006). Influence of exogenous application of silicon on physiological response of salt-stressed maize (Zea mays L.). International Journal of Agriculture and Biology, 8(2), 293–297.

Munns, R. (2005). Genes and salt tolerance: bringing them together. New Phytologist, 167(3), 645–663. https://doi.org/10.1111/j.1469-8137.2005.01487.x DOI: https://doi.org/10.1111/j.1469-8137.2005.01487.x

Nabati, J., Kafi, M., Nezami, A., Moghaddam, P. R., Ali, M., & Mehrjerdi, M. Z. (2011). Effect of salinity on biomass production and activities of some key enzymatic antioxidants in Kochia (Kochia scoparia). Pakistan Journal of Botany, 43(1), 539–548.

Neumann, D., & Zur Nieden, U. (2001). Silicon and heavy metal tolerance of higher plants. Phytochemistry, 56(7), 685–692. https://doi.org/10.1016/S0031-9422(00)00472-6 DOI: https://doi.org/10.1016/S0031-9422(00)00472-6

Ouzounidou, G., Giannakoula, A., Ilias, I., & Zamanidis, P. (2016). Alleviation of drought and salinity stresses on growth, physiology, biochemistry and quality of two Cucumis sativus L. cultivars by Si application. Revista Brasileira de Botanica, 39(2), 531–539.

https://doi.org/10.1007/s40415-016-0274-y DOI: https://doi.org/10.1007/s40415-016-0274-y

Paul, D. (2013). Osmotic stress adaptations in rhizobacteria. Journal of Basic Microbiology, 53(2), 101–110. https://doi.org/10.1002/jobm.201100288 DOI: https://doi.org/10.1002/jobm.201100288

Pitman, M. G., & Läuchli, A. (2002). CHAPTER 1 GLOBAL IMPACT OF SALINITY AND AGRICULTURAL ECOSYSTEMS Agricultural losses caused by salinity are difficult to assess but estimated to be substantial and expected to increase with time . Secondary salinization of agricultural lands is particularl, 3–20.

Razavi, B. M., & Hosseinzadeh, H. (2015). Saffron as an antidote or a protective agent against natural or chemical toxicities. DARU Journal of Pharmaceutical Sciences, 23 (1), 1–9.

https://doi.org/10.1186/s40199-015-0112-y DOI: https://doi.org/10.1186/s40199-015-0112-y

Romani, A., Pinelli, P., Cantini, C., Cimato, A., & Heimler, D. (2006). Characterization of Violetto di Toscana, a typical Italian variety of artichoke (Cynara scolymus L.). Food Chemistry, 95(2), 221–225. https://doi.org/10.1016/j.foodchem.2005.01.013 DOI: https://doi.org/10.1016/j.foodchem.2005.01.013

Sahebi, M., Hanafi, M. M., Siti Nor Akmar, A., Rafii, M. Y., Azizi, P., Tengoua, F. F.,&Shabanimofrad, M. (2015). Importance of silicon and mechanisms of biosilica formation in plants. BioMed Research International. https://doi.org/10.1155/2015/396010 DOI: https://doi.org/10.1155/2015/396010

Sánchez-Vioque, R., Rodríguez-Conde, M. F., Reina-Ureña, J. V., Escolano-Tercero, M. A., Herraiz-Peñalver, D., & Santana-Méridas, O. (2012). In vitro antioxidant and metal chelating properties of corm, tepal and leaf from saffron (Crocus sativus L.). Industrial Crops and Products, 39(1), 149–153. https://doi.org/10.1016/j.indcrop.2012.02.028 DOI: https://doi.org/10.1016/j.indcrop.2012.02.028

Shahbaz, M., & Ashraf, M. (2013). Improving Salinity Tolerance in Cereals. Critical Reviews in Plant Sciences, 32(4), 237–249. https://doi.org/10.1080/07352689.2013.758544 DOI: https://doi.org/10.1080/07352689.2013.758544

Singh, A. K. (2004). The Physiology of Salt Tolerance in Four Genotypes of Chickpea during Germination, 6, 87–93.

Sperry, J. S., Hacke, U. G., Oren, R., & Comstock, J. P. (2002). Water deficits and hydraulic limits to leaf water supply. Plant, Cell and Environment, 25(2), 251–263. https://doi.org/10.1046/j.0016-8025.2001.00799.x DOI: https://doi.org/10.1046/j.0016-8025.2001.00799.x

Zhu, Y., & Gong, H. (2014). Beneficial effects of silicon on salt and drought tolerance in plants. Agronomy for Sustainable Development, 34(2), 455–472. https://doi.org/10.1007/s13593-013-0194-1 DOI: https://doi.org/10.1007/s13593-013-0194-1

Zhu, Z., Wei, G., Li, J., Qian, Q., & Yu, J. (2004). Silicon alleviates salt stress and increases antioxidant enzymes activity in leaves of salt-stressed cucumber (Cucumis sativus L.). Plant Science, 167(3), 527–533. https://doi.org/10.1016/j.plantsci.2004.04.020 DOI: https://doi.org/10.1016/j.plantsci.2004.04.020

Downloads

Published

2018-09-30

How to Cite

Jamila, ahimi, Zakia, B., Fouad, A., Nabil, S., & Rachid, M. (2018). EFFECT OF SILICON APPLICATION ONTALIOUINE CROCUS SATIVUS (L) CULTIVATION UNDERSALT STRESS. International Journal of Research -GRANTHAALAYAH, 6(9), 291–300. https://doi.org/10.29121/granthaalayah.v6.i9.2018.1233