DETERMINATION OF THE PHYLOGENETIC RELATEDNESS OF CRONOBACTER SPP. ISOLATED FROM POWDERED INFANT FORMULA RETAILED IN NIGERIA USING PAN–GENOMIC DNA MICROARRAY

Authors

  • Abimbola R. Ezeh Department of Microbiology, Faculty of Science, University of Lagos, Akoka, Lagos, Nigeria
  • Ben D. Tall Center of Food Safety and Applied Nutrition, U. S. Food and Drug Administration, Laurel, MD 20708, USA
  • Jayanthi Gangiredla Center of Food Safety and Applied Nutrition, U. S. Food and Drug Administration, Laurel, MD 20708, USA
  • Stella I. Smith Department of Molecular Biology and Biotechnology, Nigerian Institute of Medical Research, Yaba, Lagos, Nigeria
  • Olusimbo O. Aboaba Department of Microbiology, Faculty of Science, University of Lagos, Akoka, Lagos, Nigeria

DOI:

https://doi.org/10.29121/granthaalayah.v6.i7.2018.1313

Keywords:

Cronobacter sakazakii, C. malonaticus, Powdered infant formula, Virulence, Microarray Hybridization

Abstract [English]

Cronobacter spp. are emerging, opportunistic, food-borne pathogens associated with infections like meningitis, necrotizing enterocolitis and septicaemia in premature and immunocompromised neonates and infants. The phylogenetic relatedness of three Cronobacter species isolated from powdered infant formula retailed in Nigeria was carried out using a Pan-Genomic DNA Microarray constituting 19,287 independent genes representing 15 Cronobacter genomes and 18 plasmids and 2,371 virulence genes of phylogenetically related Gram-negative bacteria. The hybridization results showed that Cronobacter malonaticus (CS14) and Cronobacter sakazakii (CS17 and CS124) clustered with powdered infant formula environmental and clinical strains of C. malonaticus and C. sakazakii isolated from countries like Jordan, Czech Republic, Ireland and USA with a significant relatedness greater than 80%. The sequence types of C. malonaticus CS14 was ST303 and C. sakakakii CS17 and CS124 were ST304 and ST296, respectively. Some virulence genes (integrase of Shigella flexnerri bacteriophage X, hypothetical protein z1655, dihydrofolate reductase, and formate acetyltransferase 1) were detected in CS124 and CS17. Adequate regulatory measures should be applied to monitor imported and locally produced powdered infant formulae to prevent contamination with Cronobacter spp. and other food borne pathogens to ensure the safety of vulnerable neonates and infants.

Downloads

Download data is not yet available.

References

Affymetrix. Expression Analysis Technical Manual, with Specific Protocols for Use with the Hybridization, Wash, and Stain Kit Available from:

http://www.affymetrix.com/support/downloads/manuals/expression_analysis_technical_manual.pdf 2014

Ashfaqul, H., Tahmeed, A., Mohammad, S. and Dilruba, A. (2010). Isolation and Molecular Identification of Cronobacter spp. from Powdered Infant Formula (PIF) in Bangladesh International Journal of Food Microbiology, 142(3), 375-378.

http://dx.doi.org/10.1016/j.ijfoodmicro.2010.07.019 DOI: https://doi.org/10.1016/j.ijfoodmicro.2010.07.019

Biering, G., Karlsson, S., Clark, N. C., JónsdóttiR, K. E., Lúdvígsson, P. and Steingrímsson, O. (1989). Three Cases of Neonatal Meningitis Caused by Enterobacter sakazakii in Powdered Milk. Journal of Clinical Microbiology, 27, 2054–2056. DOI: https://doi.org/10.1128/JCM.27.9.2054-2056.1989

Bolstad, B. M., Irizarry, R. A., Astrand, M. and Speed, T. P. (2003). A Comparison of Normalization Methods for High Density Oligonucleotide Array Data Based on Variance and Bias. Bioinformatics, 19, 185-193. DOI: https://doi.org/10.1093/bioinformatics/19.2.185

Brüssow, H., Canchaya, C. and Hardt, W. D. (2004). Phages and the Evolution of Bacterial Pathogens: From Genomic Rearrangements to Lysogenic Conversion. Microbiology and Molecular Biology Reviews, 68, 560-602. http://dx.doi.org/10.1128/MMBR.68.3.560-602.

Carter, L., Lindsey, L. A., Grim, C. J., & Sathyamoorthy, V. et al. (2013). Multiplex PCR Assay Targeting a Diguanylate Cyclase-encoding Gene, cgcA, to Differentiate Species within the Genus Cronobacter. Applied and Environmental Microbiology, 79, 734-737.

http://dx.doi.org/10.1128/AEM.02898-12. DOI: https://doi.org/10.1128/AEM.02898-12

Farmer, J. J. (2015). My 40-year History with Cronobacter/Enterobacter sakazakii – Lessons Learned, Myths Debunked, and Recommendations. Frontiers in Pediatrics, 3(84), 1-12.

http://dx.doi.org/10.3389/fped.2015.00084 DOI: https://doi.org/10.3389/fped.2015.00084

Forsythe, S. J. (2018). Updates on the Cronobacter Genus. Annual Review of Food Science and Technology, 9(1), 23-44. http://dx.doi.org/ 10.1146/annurev-food-030117-012246 DOI: https://doi.org/10.1146/annurev-food-030117-012246

Franco, A.A., Hu, L., Grim, C.J., Gopinath, G., Sathyamoorthy, V., Jarvis, K. G. et al. (2011). Characterization of Putative Virulence Genes on the Related RepFIB Plasmids Harbored by Cronobacter spp. Applied and Environmental Microbiology, 77(10), 3255–3267.

http://dx.doi.org/10.1128/AEM.03023-10. DOI: https://doi.org/10.1128/AEM.03023-10

Fu, s., Gao, J., Liu, Y., and Chen H. (2011). Isolation of Cronobacter spp. Isolates from Infant Formulas and Their Survival in the Production Process of Infant Formula. Czech. Journal of Food Sciences, 29, 391–399. http://dx.doi.org/ 10.17221/255/2010-CJFS DOI: https://doi.org/10.17221/255/2010-CJFS

Gicova, A., Orieskova, M., Oslanecova., L., Drahovska, H. and Kaclikova, E. (2013). Identification and Characterization of Cronobacter Strains Isolated from Powdered Infant Foods. Letters in Applied Microbiology, 58, 242—247. http://dx.doi.org/ 10.1111/lam.12179 DOI: https://doi.org/10.1111/lam.12179

Heuvelink, A. E., Kodde, F. D., Zwartkruis-Nahuis, J. T. M. and Boer, E. (2001). Enterobacter sakazakii in Melkpoeder. Keuringsdienst van Waren Oost., project number OT 0110.

Iversen, C., Mullane, N., Mccardell, B., & Tall, B. D., et al. (2008). Cronobacter gen. nov., a New Genus to Accommodate the Biogroups of Enterobacter sakazakii, and Proposal of Cronobacter sakazakii gen. nov., comb. nov., Cronobacter malonaticus sp. nov., Cronobacter turicensis sp. nov., Cronobacter muytjensii sp. nov., Cronobacter dublinensis sp. nov., Cronobacter genomospecies 1, and of three subspecies, Cronobacter dublinensis ssp. dublinensis ssp. nov., Cronobacter dublinensis ssp. lausannensis ssp. nov. and Cronobacter dublinensis ssp. lactaridi ssp. nov. International Journal of Systematic and Evolutionary Microbiology, 58, 1442-1447.https://dx.doi.org/10.1099/ijs.0.65577-0 DOI: https://doi.org/10.1099/ijs.0.65577-0

Jackson, S. A., Patel, I. R., Barnaba, T., Leclerc, J. E. and Cebula, T. A. (2011). Investigating the Global Genomic Diversity of Escherichia coli using a Multi-Genome DNA Microarray Platform with Novel Gene Prediction Strategies. BMC Genomics, 12, 349-365.

https://dx.doi.org/10.1186/1471-2164-12-349 DOI: https://doi.org/10.1186/1471-2164-12-349

Jackson, E. E., Sonbol, H., Masood, N. and Forsythe S. J. (2014). Genotypic and Phenotypic Characteristics of Cronobacter species, with Particular Attention to the Newly Reclassified species Cronobacter helveticus, Cronobacter pulveris, and Cronobacter zurichensis. Food Microbiology, 44, 226-235. https://dx.doi.org/ 10.1016/j.fm.2014.06.013 DOI: https://doi.org/10.1016/j.fm.2014.06.013

Joseph, S., Cetinkaya, E., Drahovska, H., & Levican, A. et al. (2012). Cronobacter condimenti sp. nov., Isolated from Spiced Meat, and Cronobacter universalis sp. nov., a Species Designation for Cronobacter sp. genomospecies 1, Recovered from a Leg Infection, Water and Food Ingredients. International Journal of Systematic and Evolutionary Microbiology, 62, 1277-1283.

https://dx.doi.org/ 10.1099/ijs.0.032292-0

Juan-pablo, H., Álvarez-Ordóñez, A., Morrissey, R., ROS-CHUMILLAS, M., ESTEBAN, M., MATÉ, J. et al. (2015). Heat resistance of Cronobacter sakazakii DPC 6529 and its Behavior in Reconstituted Powdered Infant Formula. Food Research International, 69, 401-409. DOI: https://doi.org/10.1016/j.foodres.2015.01.010

http://dx.doi.org/ 10.1016/j.foodres.2015.01.010.

Kelly, B. G., Vespermann, A. and Bolton, D. J. Horizontal Gene Transfer of Virulence (2009). Determinants in Selected Bacterial Foodborne Pathogens. Food and Chemical Toxicology, 47, 969-977. http://dx.doi.org/ 10.1016/j.fct.2008.02.007 DOI: https://doi.org/10.1016/j.fct.2008.02.007

Kothary, M. H., Mccardell, B. A., Frazar, and C. D., Deer D. et al. (2007). Characterization of the Zinc-containing Metalloprotease (zpx) and Development of a Species-specific Detection Method for Enterobacter sakazakii. Applied and Environmental Microbiology, 73, 4142–4151. DOI: https://doi.org/10.1128/AEM.02729-06

http://dx.doi.org/ 10.1128/AEM.02729-06

Kucerova, E., Joseph, S. and Forsythe, S. (2011). Cronobacter: Diversity and Ubiquity. Quality Assurance and Safety of Crops and Foods, 3, 104-122. http://dx.doi.org/ 10.1111/j.1757-837X.2011.00104.x DOI: https://doi.org/10.1111/j.1757-837X.2011.00104.x

Lehner, A., Fricker-Feer, C., and Stephan, R. (2012,). Identification of the Recently Described Cronobacter condimenti by a rpoB Based PCR System. Journal of Medical Microbiology, 61, 1034-1035. http://dx.doi.org/10.1099/jmm.0.042903-0. DOI: https://doi.org/10.1099/jmm.0.042903-0

Li, Z., Ge, W., Li, K., Gan, J., Zhang, Y., Zhang, Q. et al. (2016). Prevalence and Characterization of Cronobacter sakazakii in Retail Milk-based Infant and Baby Foods in Shaanxi, China. Foodborne Pathogen Disease, 13, 221–227. http://dx.doi.org/ 10.1089/fpd.2015.2074 DOI: https://doi.org/10.1089/fpd.2015.2074

Mardaneh, J. and Dallal, M. (2016). Study of Cronobacter sakazakii Strains isolated from Powdered Milk Infant Formula by Phenotypic and Molecular Methods in Iran. Archives of Pediatric Infectious Diseases, 5(1), 1-6. http://dx.doi.org/ 10.5812/pedinfect.38867 DOI: https://doi.org/10.5812/pedinfect.38867

Muytjens H. L., Roelofs-Willemse H. and Jasper G. H. (1988). Quality of Powder Substitutes for Breast Milk with Regards to Members of the family Enterobacteriaceae. Journal of Clinical Microbiology, 26(4), 743-746. DOI: https://doi.org/10.1128/JCM.26.4.743-746.1988

Nazarowec-White, M. and Farber, J. M. (1997). Enterobacter sakazakii: A Review. International Journal of Food Microbiology, 34, 1997, 103–113. DOI: https://doi.org/10.1016/S0168-1605(96)01172-5

Norberg, S., Stanton, C., Ross, R.P., Hill, C., Fitzgerald, G. F. and Cotter, P. D. (2012). Cronobacter spp. in Powdered Infant Formula. Journal of Food Protection, 75, 607–620. http://dx.doi.org/ 10.4315/0362-028X.JFP-11-285 DOI: https://doi.org/10.4315/0362-028X.JFP-11-285

Ochman, H., Lawrence, J. G. and Groisman, E. A. (2000). Lateral Gene Transfer and the Nature of Bacterial Innovation. Nature, 405, 299-304. http://dx.doi.org/ 10.1038/35012500 DOI: https://doi.org/10.1038/35012500

Patrick, M. E, Mahon, B. E. Greene, S. A., Rounds, J., Cronquist, A., Wymore, K. et al. (2014). Incidence of Cronobacter spp. Infections, United States, 2003–2009. Emerging Infectious Diseases, 20(9), 1520-1523. http://dx.doi.org/ 10.3201/eid2009.140545

Santos, R., (2006). Determination of Enterobacter sakazakii in Powdered Infant Formula, Reconstituted and Utensils Used in Baby’s Bottle Preparation. Poster 9 P1-38. IAFP (International Association for Food Protection), Calgary, 10 Canada.

Schmidt, H., and Hensel, M., (2004). Pathogenicity Islands in Bacterial Pathogenesis. Clinical Microbiology Reviews, 17(1), 14–56. DOI: https://doi.org/10.1128/CMR.17.1.14-56.2004

Silano, M., Paganin, P. and Davanzo, R. (2016). Time for the 70 °C Water Precautionary Option in the Home Dilution of Powdered Infant Formula. Italian Journal of Pediatrics, 42(17), 1-3. http://dx.doi.org/ 10.1186/s13052-016-0228-9 DOI: https://doi.org/10.1186/s13052-016-0228-9

Simmons, B. P., Gelfand, M. S., Haas, M., Metts, L. and Ferguson, J. (1989). Enterobacter sakazakii Infections in Neonates Associated with Intrinsic Contamination of a Powdered Infant Formula. Infection Control and Hospital Epidemiology, 10, 398–401. DOI: https://doi.org/10.2307/30144207

Singh, R., Schroeder, C. M., Meng, J., White, D. G., Mcdermott, P. F., Wagner, D. D., et al. (2005). Identification of Antimicrobial Resistance and Class 1 integrons in Shiga Toxin-producing Escherichia coli Recovered from Humans and Food Animals. Journal of Antimicrobial Chemotherapy, 56 (1), 216–219. http://dx.doi.org/ 10.1093/jac/dki161 DOI: https://doi.org/10.1093/jac/dki161

Stoop, B., Lehner, A., Iversen, C., and Fanning, S., et al. (2009). Development and Evaluation of rpoB Based PCR Systems to Differentiate the Six Proposed Species within the Genus Cronobacter. International Journal of Food Microbiology, 136, 165-168. doi: DOI: https://doi.org/10.1016/j.ijfoodmicro.2009.04.023

1016/j.ijfoodmicro.2009.04.023. DOI: https://doi.org/10.1088/1126-6708/2009/04/023

Tall, B. D., Gangiredla, J., Gopinath, G., Yan, Q., Chase, H. R., Lee, B. et al. (2015). Development of a Custom-designed, Pan Genomic DNA Microarray to Characterize Strain-level Diversity among Cronobacter spp. Frontiers in Pediatrics, 3(36), 1-11.

http://dx.doi.org/10.3389/fped.2015.00036 DOI: https://doi.org/10.3389/fped.2015.00036

Tall, B. D., Gangiredla, J., Grim, C. J., Patel, I. R., Jackson, S. A., Mammel, M. K., Kothary, M. H., Sathyamoorthy, V., Carter, L., Fanning, S., Iversen, C., Pagotto, F., Stephan, R., Lehner, A., Farber, J., Yan, Q. Q. and Gopinath, G. R. et al. (2017). Use of a Pan-Genomic DNA Microarray in Determination of the Phylogenetic Relatedness among Cronobacter spp. and its Use as a Data Mining Tool to Understand Cronobacter Biology. Microarrays, 6(6), 1-11.

http://dx.doi.org/10.3390/microarrays6010006 DOI: https://doi.org/10.3390/microarrays6010006

Townsend, S., Hurrell, E. and Forsythe, S. (2008). Virulence Studies of Enterobacter sakazakii Isolates Associated with a Neonatal Intensive Care Unit Outbreak. Microbiology, 8(64), 3538-3547. http://dx.doi.org/ 10.1186/1471-2180-8-64

World Health Organization Guidelines for the Safe Preparation, Storage and Handling of Powdered Infant Formula. Geneva. 2007.

Yan, Q., Jarvis, G. K., Chase, R.H., Hebert, K., Trach, L. H. Lee, C. et al. (2015). A Proposed Harmonized LPS Molecular-subtyping Scheme for Cronobacter Species. Food Microbiology, 50, 38-43. http://dx.doi.org/ 10.1016/j.fm.2015.03.003 DOI: https://doi.org/10.1016/j.fm.2015.03.003

Downloads

Published

2018-07-31

How to Cite

R. Ezeh, A., Tall, B. D., Gangiredla, J., Smith, S. I., & Aboaba, O. O. (2018). DETERMINATION OF THE PHYLOGENETIC RELATEDNESS OF CRONOBACTER SPP. ISOLATED FROM POWDERED INFANT FORMULA RETAILED IN NIGERIA USING PAN–GENOMIC DNA MICROARRAY. International Journal of Research -GRANTHAALAYAH, 6(7), 327–340. https://doi.org/10.29121/granthaalayah.v6.i7.2018.1313