MECHANICAL PROPERTIES OF DISCONNECTED MULTIWALLED CARBON NANOTUBES AND CARBON NANOTUBE COMPOSITES - A REVIEW PAPER

Authors

  • Elias Randjbaran Aerospace Manufacturing Research Centre (AMRC) Level 7, Tower Block, Faculty of Engineering 43400 UPM, Serdang, Selangor, Malaysia
  • Rizal Zahari Aerospace Manufacturing Research Centre (AMRC) Level 7, Tower Block, Faculty of Engineering 43400 UPM, Serdang, Selangor, Malaysia 2 Systems Engineering Department, Military Technological College, Muscat, Sultanate of Oman
  • Dayang L. Majid Aerospace Manufacturing Research Centre (AMRC) Level 7, Tower Block, Faculty of Engineering 43400 UPM, Serdang, Selangor, Malaysia
  • Mohamed T. H. Sultan Aerospace Manufacturing Research Centre (AMRC) Level 7, Tower Block, Faculty of Engineering 43400 UPM, Serdang, Selangor, Malaysia
  • Norkhairunnisa Mazlan Aerospace Manufacturing Research Centre (AMRC) Level 7, Tower Block, Faculty of Engineering 43400 UPM, Serdang, Selangor, Malaysia

DOI:

https://doi.org/10.29121/granthaalayah.v6.i6.2018.1368

Keywords:

Carbon Nanotubes, Composites, Mechanical Properties, Imaging

Abstract [English]

Motivation/Background: Current review paper is about the forecast of Young's modulus for carbon nanotubes, from both hypothetical and exploratory angles are introduced.  The disparities between the estimations of Young's modulus announced in the writing are broke down, and distinctive patterns of the outcomes are examined. Explain the importance of the problem investigated in the paper. Include here a statement of the main research question.


Method: A whole investigation is performed to feature the obstructions and downsides of the demonstrating methods and crucial presumptions utilized which ought to be defeated in additionally contemplates.


Conclusions: The perspectives that ought to be considered all the more precisely in demonstrating carbon nanotube composites are distinguished.

Downloads

Download data is not yet available.

References

Cha, J., Jin, S., Shim, J. H., Park, C. S., Ryu, H. J. and Hong, S. H.: Functionalization of carbon nanotubes for fabrication of CNT/epoxy nanocomposites, Materials & Design, 5, 95, 1–8, 2016. DOI: https://doi.org/10.1016/j.matdes.2016.01.077

Ramanathan, M., Shanov, V., Kumta, P. N.: Carbon Nanotube-Based Impedimetric Biosensors for Bone Marker Detection, Mitali Patil Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA, Advances in Materials Science for Environmental and Energy Technologies IV: Ceramic Transactions, 253, 187, 2015.

Pradhan, S., Pandey, P., Mohanty, S. and Nayak, S. K.: Insight on the Chemistry of Epoxy and Its Curing for Coating Applications: A Detailed Investigation and Future Perspectives. Polymer-Plastics Technology and Engineering, 55, 8, 862–77, 2016. DOI: https://doi.org/10.1080/03602559.2015.1103269

H¨unnekens, B., Peters, F., Avramidis, G., Krause, A., Militz, H. and Vi¨ol, W.: Plasma treatment of wood–polymer composites: A comparison of three different discharge types and their effect on surface properties, Journal of Applied Polymer Science, 133, 18, 2016. DOI: https://doi.org/10.1002/app.43376

Bonduel, D., Kchit, N. and Claes, M.: Use of carbon nanotubes in structural composites, Smart Intelligent Aircraft Structures (SARISTU), Springer International Publishing, 755–762, 2016. DOI: https://doi.org/10.1007/978-3-319-22413-8_38

Chen, Y., Zhang, H. B., Yang, Y., Wang, M., Cao, A. and Yu, Z. Z.: High-Performance Epoxy Nanocomposites Reinforced with Three-Dimensional Carbon Nanotube Sponge for Electromagnetic Interference Shielding, Advanced Functional Materials, 26, 3, 447–55, 2016.

Islam, M. S., Deng, Y., Tong, L., Faisal, S. N., Roy, A. K., Minett, A. I. and Gomes, V. G.: Grafting carbon nanotubes directly onto carbon fibers for superior mechanical stability: Towards next generation aerospace composites and energy storage applications, Carbon, 96, 701–10, 2016. DOI: https://doi.org/10.1016/j.carbon.2015.10.002

Tornabene, F., Fantuzzi, N., Bacciocchi, M. and Viola, E.: Effect of agglomeration on the natural frequencies of functionally graded carbon nanotube-reinforced laminated composite doubly-curved shells, Composites Part B: Engineering, 89, 187– 218, 2016.

G´omez-del R´ıo, T., Salazar, A., Pearson, R. A. and Rodr´ıguez, J.: Fracture behaviour of epoxy nanocomposites modified with triblock copolymers and carbon nanotubes, Composites Part B: Engineering, 87, 343–9, 2016. DOI: https://doi.org/10.1016/j.compositesb.2015.08.085

Fujigaya, T., Saegusa, Y., Momota, S., Uda, N. and Nakashima, N.: Interfacial engineering of epoxy/carbon nanotubes using reactive glue for effective reinforcement of the composite, Polymer Journal, 48, 2, 183–8, 2016.

Zhou, H. W., Mishnaevsky, L., Yi, H. Y., Liu, Y. Q., Hu, X., Warrier, A. and Dai, G. M.: Carbon fiber/carbon nanotube reinforced hierarchical composites: Effect of CNT distribution on shearing strength, Composites Part B: Engineering, 88, 201–11, 2016. DOI: https://doi.org/10.1016/j.compositesb.2015.10.035

Randjbaran, E., Zahari, R., Abdul Jalil, N. A. and Majid, D. L.: Hybrid composite laminates reinforced with kevlar/carbon/glass woven fabrics for ballistic impact testing, The Scientific World Journal, 2014. DOI: https://doi.org/10.1155/2014/413753

Randjbaran, E., Zahari, R., Majid, D. L., Jalil, N. A., Vaghei, R. andAhmadi, R.; The effects of stacking sequence layers of six layers composite materials in ballistic energy absorption, International Journal of Material Science Innovations, 1, 6, 293–305, 2013.

Randjbaran, E., Zahari, R., Majid, D. L., Jalil, N. A., Vaghei, R. and Ahmadi, R.: The effects of stacking sequence layers of hybrid composite materials inenergy absorption under the high velocity ballistic impact conditions: an experimental investigation, Journal of Material Sciences & Engineering, 2013. DOI: https://doi.org/10.4172/2169-0022.1000130

Randjbaran, E., Zahari, R., Majid, D. L., Jalil, N. A., Vaghei, R. and Ahmadi, R.: Effects of Stacking Sequence on Compression Response Testing of Carbon Fibre and Hybrids: Fibrous-Glass/Carbon/Kevlar/Epoxy Composite Plates, MATRIX Academic International Online Journal of Engineering and Technology, 2, 1, 13–7, 2013.

Randjbaran, E., Zahari, R., Majid, D. L., Jalil, N. A., Vaghei, R. and Ahmadi, R.: Experimental Study of the Influence of Stacking Order of the Fibrous Layers on Laminated Hybrid Composite Plates Subjected to Compression Loading, Journal of Science and Engineering, 4, 1, 01–8, 2014.

Randjbaran, E., Zahari, R., Vaghei, R. and Karamizadeh, F.: A Review Paper on Comparison of Numerical Techniques for Finding Approximate Solutions to Boundary Value Problems on Post-Buckling in Functionally Graded Materials, Trends Journal of Sciences Research, 1, 1, 1–6, 2015. DOI: https://doi.org/10.31586/MechanicalEngineering.0201.01

Randjbaran, E., Zahari, R. and Vaghei, R.: Scanning Electron Microscopy Interpretation In Carbon Nanotubes Composite Materials After Postbuckling – Review Paper, MATRIX Academic International Online Journal of Engineering and Technology, 2, 2, 1–6, 2014.

Randjbaran, E., Zahari, R. and Vaghei, R.: Computing Simulation of Postbuckling in Functionally Graded Materials - A Review, Indonesian Journal of Electrical Engineering and Computer Science, 12, 12, 8344–8, 2014. DOI: https://doi.org/10.11591/telkomnika.v12i12.6672

Randjbaran, E., Zahari, R., Majid D. L., Sultan, M. T. H. and Mazlan, N.: Effects of Carbon Nanotube on Mechanical Properties of Composite plates - A Review Paper, MATRIX Academic International Online Journal of Engineering and Technology, 3, 2, 1–8, 2015. http://maioj.org/pub.aspx?PaperId=101503.

Reddy, P. R., Reddy, T. S., Srikanth, I., Madhu, V., Gogia, A. K. and Rao, K. V.: Effect of viscoelastic behaviour of glass laminates on their energy absorption subjected to high velocity impact, Materials & Design, 98, 272–9, 2016. DOI: https://doi.org/10.1016/j.matdes.2016.03.038

Saba, N., Paridah, M. T., Abdan, K. and Ibrahim, N. A.: Dynamic mechanical properties of oil palm nano filler/kenaf/epoxy hybrid nanocomposites, Construction and Building Materials, 124, 133–8, 2016. DOI: https://doi.org/10.1016/j.conbuildmat.2016.07.059

Ostovan, F., Matori, K. A., Toozandehjani M., Oskoueian, A., Yusoff, H. M., Yunus, R., Ariff, A. H., Quah, H. J. and Lim, W. F.: Effects of CNTs content and milling time on mechanical behavior of MWCNT-reinforced aluminum nanocomposites, Materials Chemistry and Physics, 166, 160–6, 2015. DOI: https://doi.org/10.1016/j.matchemphys.2015.09.041

Shabaneh, A., Girei, S., Arasu, P., Mahdi, M., Rashid, S., Paiman, S. and Yaacob, M.: Dynamic response of tapered optical multimode fiber coated with carbon nanotubes for ethanol sensing application, Sensors, 15, 5, 10452–64, 2015. DOI: https://doi.org/10.3390/s150510452

Ramli, N. I., Rashid, S. A., Sulaiman, Y., Mamat, M. S., Zobir, S. A., Krishnan, S.: Physicochemical and electrochemical properties of carbon nanotube/graphitenanofiber hybrid nanocomposites for supercapacitor, Journal of Power Sources, 328, 195–202, 2016. DOI: https://doi.org/10.1016/j.jpowsour.2016.07.110

Ghaemi, F., Yunus, R., Salleh, M. A., Rashid, S. A., Ahmadian, A. and Lim, H. N.: Effects of the surface modification of carbon fiber by growing different types of carbon nanomaterials on the mechanical and thermal properties of polypropylene, RSC Advances, 5, 36, 28822–31, 2015. DOI: https://doi.org/10.1039/C5RA01928A

Shojaei, T. R., Salleh, M. A., Sijam, K., Rahim, R. A., Mohsenifar, A., Safarnejad, R. and Tabatabaei, M.: Fluorometric immunoassay for detecting the plant virus Citrus tristeza using carbon nanoparticles acting as quenchers and antibodies labeled with CdTe quantum dots, Microchimica Acta, 1-1, 2016. DOI: https://doi.org/10.1007/s00604-016-1867-7

Lomicka, C. W., Thomas, J. A., LaBarre, E. D., Trexler, M. M, Merkle, a. C.: Improving ballistic fiber strength: insights from experiment and simulation, Dynamic Behavior of Materials, Springer International Publishing, 1, 187–193, 2014.

Randjbaran, E., Zahari, R., Majid, D. L., Sultan, M. T. H. and Mazlan, N.:Effects of Sloped Armour in Ballistic Impact Resistance - A Review Paper, MATRIX Academic International Online Journal of Engineering and Technology, 4, 2, 19–26, 2016. http://maioj.org/data/documents/oct2016/101603.pdf.

Shang, Y., Hua, C., Xu, W., Hu, X., Wang, Y., Zhou, Y., Zhang, Y., Li, X. and Cao, A.: Meter-Long Spiral Carbon Nanotube Fibers Show Ultrauniformity and Flexibility, Nano letters, 16, 3, 1768–75, 2016. DOI: https://doi.org/10.1021/acs.nanolett.5b04773

Wu, X., Morimoto, T., Mukai, K., Asaka, K. and Okazaki, T.: Relationship between Mechanical and Electrical Properties of Continuous Polymer-Free Carbon Nanotube Fibers by Wet-Spinning Method and Nanotube-Length Estimated by FarInfrared Spectroscopy, J. Phys. Chem. C, 120, 36, 20419–20427, 2016 DOI: https://doi.org/10.1021/acs.jpcc.6b06746

Liu, P., Fan, Z., Mikhalchan, A., Tran, T. Q., Jewell, D., Duong, H. M. and Marconnet, A. M.: Continuous Carbon Nanotube-Based Fibers and Films for Applications Requiring Enhanced Heat Dissipation, ACS Applied Materials & Interfaces, 8, 27, 17461–71, 2016. DOI: https://doi.org/10.1021/acsami.6b04114

Xu, W., Chen, Y., Zhan, H. and Wang, J. N.: High-Strength Carbon Nanotube Film from Improving Alignment and Densification, Nano letters, 16, 2, 946–52, 2016. DOI: https://doi.org/10.1021/acs.nanolett.5b03863

Zare, M., Rayegan-Shirazi, A., Rezaei, S., Sadat, S. A., Baneshi, M. M. and Randjbaran, E.: Effects of Polychlorinated biphenyls compounds on the number of bacteria in the rhizosphere of sorghum and Onobrychis sativa, Advances in Bioresearch, 7, 3, 2016.

Mirri, F., Orloff, N. D., Forster, A. M., Ashkar, R., Headrick, R. J., Bengio, E. A., Long, C. J., Choi, A., Luo, Y., Hight Walker, A. R. and Butler, P.: Lightweight, flexible, high-performance carbon nanotube cables made by scalable flow coating, ACS applied materials & interfaces, 8, 7, 4903–10, 2016. DOI: https://doi.org/10.1021/acsami.5b11600

Davaa, E., Safari, M., Randjbaran, E. and Randjbaran, S.: The Factors That Influence Customer Satisfaction Level in the Mongolian Banking Industry, Journal of Insurance and Financial Management, 1, 3, 2016.

O’Connor, I., Hayden, H., Coleman, J. N. and Gun’ko, Y. K.: High-Strength, High-Toughness Composite Fibers by Swelling Kevlar in Nanotube Suspensions, Small, 5, 4, 466–9, 2009.

Govarthanam, K. K., Anand, S. C. and Rajendran, S.: 7 Technical textiles for knife and slash resistance, Handbook of Technical Textiles: Technical Textile Applications, 2, 193, 2016. DOI: https://doi.org/10.1016/B978-1-78242-465-9.00007-0

Dwivedi, A. K., Dalzell, M. W., Fossey, S. A., Slusarski, K. A., Long, L. R. and Wetzel, E. D.: Low velocity ballistic behavior of continuous filament knit aramid, International Journal of Impact Engineering, 96, 23–34, 2016. DOI: https://doi.org/10.1016/j.ijimpeng.2016.05.009

Yang, D. and Chen, X.: Multi-layer pattern creation for seamless front female body armor panel using angle-interlock woven fabrics, Textile Research Journal, 0040517516631315, 2016. DOI: https://doi.org/10.1177/0040517516631315

Lomicka, C. W., Thomas, J. A., LaBarre, E. D., Trexler, M. M. and Merkle, A. C.: Improving ballistic fiber strength: insights from experiment and simulation, Dynamic Behavior of Materials, Springer International Publishing 1, 187–193, 2014. DOI: https://doi.org/10.1007/978-3-319-00771-7_23

Sockalingam, S., Chowdhury, S. C., Gillespie, J. W. and Keefe, M.: Recent advances in modeling and experiments of Kevlar ballistic fibrils, fibers, yarns and flexible woven textile fabrics–a review, Textile Research Journal, 004051751664603, 2016. DOI: https://doi.org/10.1177/0040517516646039

O’Connor, I., Hayden, H., Coleman, J. N. and Gun’ko, Y. K.: High-Strength, High-Toughness Composite Fibers by Swelling Kevlar in Nanotube Suspensions, Small, 5, 4, 466–9, 2009. DOI: https://doi.org/10.1002/smll.200801102

Zheng, J., Duan, X., Lin, H., Gu, Z., Fang, H., Li, J. and Yuan, Y.: Silver nanoparticles confined in carbon nanotubes: on the understanding of the confinement effect and promotional catalysis for the selective hydrogenation of dimethyl oxalate, Nanoscale, 8, 11, 5959–67, 2016. DOI: https://doi.org/10.1039/C5NR08651E

Haft, M., Gr¨onke, M., Gellesch, M., Wurmehl, S., B¨uchner, B., Mertig, M. and Hampel, S.: Tailored nanoparticles and wires of Sn, Ge and Pb inside carbon nanotubes, Carbon, 101, 352–60, 2016. DOI: https://doi.org/10.1016/j.carbon.2016.01.098

Gun’ko, V. M. and Do, D. D.: Characterisation of pore structure of carbon adsorbents using regularisation procedure, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 193, 1, 71–83, 2001. DOI: https://doi.org/10.1016/S0927-7757(01)00685-9

Gun’ko, V. M. and Mikhalovsky, S. V.: Evaluation of slitlike porosity of carbon adsorbents, Carbon, 42, 4, 843–9, 2004. DOI: https://doi.org/10.1016/j.carbon.2004.01.059

Jiang, L. Y., Huang, Y., Jiang, H., Ravichandran, G., Gao, H., Hwang, K. C. and Liu, B.: A cohesive law for carbon nanotube/polymer interfaces based on the van der Waals force, Journal of the Mechanics and Physics of Solids, 54, 11, 2436–52, 2006.

Wong, M., Paramsothy, M., Xu, X. J., Ren, Y., Li, S. and Liao, K.: Physical interactions at carbon nanotube-polymer interface, Polymer, 44, 25, 7757–64, 2003. DOI: https://doi.org/10.1016/j.polymer.2003.10.011

Liao, K. and Li, S.: Interfacial characteristics of a carbon nanotube–polystyrene composite system, Applied Physics Letters, 79, 25, 4225–7, 2001. DOI: https://doi.org/10.1063/1.1428116

Veedu, V. P., Cao, A., Li, X., Ma, K., Soldano, C., Kar, S., Ajayan, P.M. and Ghasemi-Nejhad, M. N.: Multifunctional composites using reinforced laminae with carbon-nanotube forests, Nature materials, 5, 6, 457–62, 2006. DOI: https://doi.org/10.1038/nmat1650

Wang, Y., Colas, G. and Filleter, T.: Improvements in the mechanical properties of carbon nanotube fibers through graphene oxide interlocking, Carbon, 98, 291–9, 2016. DOI: https://doi.org/10.1016/j.carbon.2015.11.008

Koizumi, R., Hart, A. H., Brunetto, G., Bhowmick, S., Owuor, P. S., Hamel, J. T., Gentles, A. X., Ozden, S., Lou, J., Vajtai, R. and Asif, S. S.: Mechano-chemical stabilization of three-dimensional carbon nanotube aggregates, Carbon, 110, 27–33, 2016. DOI: https://doi.org/10.1016/j.carbon.2016.08.085

Chowdhury, S. C. and Okabe, T.: Computer simulation of carbon nanotube pullout from polymer by the molecular dynamics method, Composites Part A: Applied Science and Manufacturing, 38, 3, 747–54, 2007. DOI: https://doi.org/10.1016/j.compositesa.2006.09.011

Li, Y., Liu, Y., Peng, X., Yan, C., Liu, S. and Hu, N.: Pull-out simulations on interfacial properties of carbon nanotube-reinforced polymer nanocomposites. Computational Materials Science, 50, 6, 1854–60, 2011. DOI: https://doi.org/10.1016/j.commatsci.2011.01.029

Wagner, H. D. and Vaia, R. A.: Nanocomposites: issues at the interface, Materials Today, 7, 11, 38–42, 2004. DOI: https://doi.org/10.1016/S1369-7021(04)00507-3

Wagner, H. D., Ajayan, P. M. and Schulte, K.: Nanocomposite toughness from a pull-out mechanism, Composites Science and Technology, 83, 27–31, 2013. DOI: https://doi.org/10.1016/j.compscitech.2013.04.017

Esawi, A. M., Morsi, K., Sayed, A., Taher, M. and Lanka, S.: Effect of carbon nanotube (CNT) content on the mechanical properties of CNT-reinforced aluminium composites, Composites Science and Technology, 70, 16, 2237–41, 2010. DOI: https://doi.org/10.1016/j.compscitech.2010.05.004

He, X. Q., Kitipornchai, S. and Liew, K. M.: Buckling analysis of multi-walled carbon nanotubes: a continuum model accounting for van der Waals interaction, Journal of the Mechanics and Physics of Solids, 53, 2, 303–26, 2005. DOI: https://doi.org/10.1016/j.jmps.2004.08.003

Jiang, L. Y., Huang, Y., Jiang, H., Ravichandran, G., Gao, H., Hwang, K. C. and Liu, B.: A cohesive law for carbon nanotube/polymer interfaces based on the van der Waals force, Journal of the Mechanics and Physics of Solids, 54, 11,2436–52, 2006. DOI: https://doi.org/10.1016/j.jmps.2006.04.009

Tan, H., Jiang, L. Y., Huang, Y., Liu, B. and Hwang, K. C.: The effect of van der Waals-based interface cohesive law on carbon nanotube-reinforced composite materials, Composites Science and Technology, 67, 14, 2941–6, 2007. DOI: https://doi.org/10.1016/j.compscitech.2007.05.016

Liu, X., Yang, Q. S., He, X. Q. and Liew, K. M.: Cohesive laws for van der Waals interactions of super carbon nanotube/polymer composites, Mechanics Research Communications, 72, 33–40, 2016. DOI: https://doi.org/10.1016/j.mechrescom.2015.12.004

Nagataki, A., Takei, K., Arie, T. and Akita, S.: Carbon nanotube mechanical resonator in potential well induced by van der Waals interaction with graphene, Applied Physics Express, 8, 8, 085101, 2015.

Zhang, X., Zhou, W. X., Chen, X. K., Liu, Y. Y. and Chen, K. Q.: Significant decrease in thermal conductivity of multi-walled carbon nanotube induced by interwall van der Waals interactions, Physics Letters A, 380, 21, 1861–4, 2016. DOI: https://doi.org/10.1016/j.physleta.2016.03.040

Chernozatonskii, L. A., Artyukh, A. A., Demin, V. A. and Katz, E. A.: Bucky-corn: van der Waals composite of carbon nanotube coated by fullerenes, Molecular Physics, 114, 9, 92–101, 2016. DOI: https://doi.org/10.1080/00268976.2015.1086834

Perebeinos, V. and Tersoff, J.: Wetting transition for carbon nanotube arrays under metal contacts, Physical review letters, 114, 8, 085501, 2015.

Tornabene, F., Fantuzzi, N., Bacciocchi, M. and Viola, E.: Effect of agglomeration on the natural frequencies of functionally graded carbon nanotube-reinforced laminated composite doubly-curved shells, Composites Part B: Engineering, 89, 187– 218, 2016. DOI: https://doi.org/10.1016/j.compositesb.2015.11.016

Kumar, A. A., Sundaram, R.: Cure cycle optimization for the resin infusion technique using carbon nanotube additives, Carbon, 96, 1043–52, 2016. DOI: https://doi.org/10.1016/j.carbon.2015.09.044

Kamarian, S., Salim, M., Dimitri, R. and Tornabene, F.: Free vibration analysis of conical shells reinforced with agglomerated Carbon Nanotubes, International Journal of Mechanical Sciences, 108, 157–65, 2016. DOI: https://doi.org/10.1016/j.ijmecsci.2016.02.006

Rathore, D. K., Singh, B. P., Mohanty, S. C., Prusty, R. K. and Ray, B. C.: Temperature dependent reinforcement efficiency of carbon nanotube in polymer composite, Composites Communications, 1, 29–32, 2016. DOI: https://doi.org/10.1016/j.coco.2016.08.002

Bautista-Quijano, J. R., P¨otschke, P., Br¨unig, H. and Heinrich, G.:Strain sensing, electrical and mechanical properties of polycarbonate/multiwall carbon nanotube monofilament fibers fabricated by melt spinning, Polymer, 82, 181–9, 2016. DOI: https://doi.org/10.1016/j.polymer.2015.11.030

Herceg, T. M., Abidin, M. S., Greenhalgh, E. S., Shaffer, M. S., Bismarck, A.; Thermosetting hierarchical composites with high carbon nanotube loadings: En route to high performance, Composites Science and Technology, 127, 134–41, 2016. DOI: https://doi.org/10.1016/j.compscitech.2016.02.015

Wang, J., Bahk, Y. K., Chen, S. C., Pui, D. Y.: Characteristics of airborne fractal-like agglomerates of carbon nanotubes, Carbon, 93, 441–50, 2015. DOI: https://doi.org/10.1016/j.carbon.2015.05.079

Moghadam, A. D., Omrani, E., Menezes, P. L., Rohatgi, P. K.: Mechanical and tribological properties of self-lubricating metal matrix nanocomposites reinforced by carbon nanotubes (CNTs) and graphene–a review, Composites Part B: Engineering, 77, 402–20, 2015. DOI: https://doi.org/10.1016/j.compositesb.2015.03.014

Chen, S. J., Qiu, C. Y., Korayem, A. H., Barati, M. R.and Duan, W. H.: Agglomeration process of surfactant-dispersed carbon nanotubes in unstable dispersion: A two-stage agglomeration model and experimental evidence, Powder Technology, 301, 412–20, 2016. DOI: https://doi.org/10.1016/j.powtec.2016.06.033

Romanov, V. S., Lomov, S. V., Verpoest, I., Gorbatikh, L.: Stress magnification due to carbon nanotube agglomeration in composites, Composite Structures, 133, 246–56, 2015. DOI: https://doi.org/10.1016/j.compstruct.2015.07.069

Balasubramanian, K., Burghard, M.: Chemically functionalized carbon nanotubes, Small, 1, 2, 180–92, 2005. DOI: https://doi.org/10.1002/smll.200400118

Wong, S. S., Joselevich, E., Woolley, A. T., Cheung, C. L., Lieber, C. M.: Covalently functionalized nanotubes as nanometre-sized probes in chemistry and biology, Nature, 394, 6688, 52–5, 1998. DOI: https://doi.org/10.1038/27873

Banerjee, S., Hemraj-Benny, T., Wong, S. S.: Covalent surface chemistry of single-walled carbon nanotubes, Advanced Materials, 17, 1, 17–29, 2005. DOI: https://doi.org/10.1002/adma.200401340

Bianco, A., Kostarelos, K., Prato, M.: Applications of carbon nanotubes in drug delivery, Current opinion in chemical biology, 9, 6, 674–9, 2005. DOI: https://doi.org/10.1016/j.cbpa.2005.10.005

Spitalsky, Z., Tasis, D., Papagelis, K. and Galiotis, C.: Carbon nanotube– polymer composites: chemistry, processing, mechanical and electrical properties, Progress in polymer science, 35, 3, 357–401, 2010. DOI: https://doi.org/10.1016/j.progpolymsci.2009.09.003

Salvetat, J. P., Bonard, J. M., Thomson, N. H., Kulik, A. J., Forro, L.,Benoit, W. and Zuppiroli, L.: Mechanical properties of carbon nanotubes, Applied Physics A, 69, 3, 255–60, 1999. DOI: https://doi.org/10.1007/s003390050999

Wei, B. Q., Vajtai, R. and Ajayan, P. M.: Reliability and current carrying capacity of carbon nanotubes, Applied Physics Letters, 79, 8, 1172, 2001.

Li, Q. W., Li, Y., Zhang, X. F., Chikkannanavar, S. B., Zhao, Y. H., Dangelewicz, A. M., Zheng, L. X., Doorn S. K., Jia, Q. X., Peterson, D. E. and Arendt, P. N.: Structure-dependent electrical properties of carbon nanotube fibers. Advanced Materials, 19, 20, 3358–63, 2007. DOI: https://doi.org/10.1002/adma.200602966

Dumitrica, T., Landis, C. M. and Yakobson, B. I.: Curvature-induced polarization in carbon nanoshells, Chemical physics letters, 360, 1, 182–8, 2002. DOI: https://doi.org/10.1016/S0009-2614(02)00820-5

Zhang, H. W., Wang, J. B. and Guo, X.: Predicting the elastic properties of single-walled carbon nanotubes, Journal of the Mechanics and Physics of Solids, 53, 9, 1929–50, 2005. DOI: https://doi.org/10.1016/j.jmps.2005.05.001

Banhart, F.: Interactions between metals and carbon nanotubes: at the interface between old and new materials, Nanoscale, 1, 2, 201–13, 2009. DOI: https://doi.org/10.1039/b9nr00127a

Jakubinek, M. B., Ashrafi, B., Zhang, Y., Martinez-Rubi, Y., Kingston, C. T., Johnston, A. and Simard, B.: Single-walled carbon nanotube–epoxy composites for structural and conductive aerospace adhesives, Composites Part B: Engineering, 69, 87–93, 2015. DOI: https://doi.org/10.1016/j.compositesb.2014.09.022

Papadopoulos, A., Gkikas, G., Paipetis, A. S., Barkoula, N. M.: Effect of CNTs addition on the erosive wear response of epoxy resin and carbon fibre composites, Composites Part A: Applied Science and Manufacturing, 84, 299–307, 2016. DOI: https://doi.org/10.1016/j.compositesa.2016.02.012

Fujigaya, T., Saegusa, Y., Momota, S., Uda, N. and Nakashima, N.: Interfacial engineering of epoxy/carbon nanotubes using reactive glue for effective reinforcement of the composite, Polymer Journal, 48, 2, 183–8, 2016.

Sun, Y., Lu, J., Ai, C., Wen, D. and Bai, X.: Multilevel resistive switching and nonvolatile memory effects in epoxy methacrylate resin and carbon nanotube composite films, Organic Electronics, 32, 7–14, 2016. DOI: https://doi.org/10.1016/j.orgel.2016.02.002

Ling, Y., Li, W., Wang, B., Gan, W., Zhu, C., Brady, M. A. and Wang, C.: Epoxy resin reinforced with nanothin polydopamine-coated carbon nanotubes: a study of the interfacial polymer layer thickness, RSC Advances, 6, 37, 31037–45, 2016. DOI: https://doi.org/10.1039/C5RA26539H

Mei, H., Zhang, S., Chen, H., Zhou, H., Zhai, X. and Cheng, L.: Interfacial modification and enhancement of toughening mechanisms in epoxy composites with CNTs grafted on carbon fibers, Composites Science and Technology, 134, 89–95, 2016. DOI: https://doi.org/10.1016/j.compscitech.2016.08.010

Wu, J., Chen, J., Zhao, Y., Liu, W. and Zhang, W.: Effect of electrophoretic condition on the electromagnetic interference shielding performance of reduced graphene oxide-carbon fiber/epoxy resin composites, Composites Part B: Engineering, 105, 167–75, 2016. DOI: https://doi.org/10.1016/j.compositesb.2016.08.042

Umer, R., Li, Y., Dong, Y., Haroosh, H. J. and Liao, K.: The effect of graphene oxide (GO) nanoparticles on the processing of epoxy/glass fiber composites using resin infusion, The International Journal of Advanced Manufacturing Technology, 81, 9-12, 2183–92, 2015. DOI: https://doi.org/10.1007/s00170-015-7427-1

Schlagenhauf, L., Buerki-Thurnherr, T., Kuo, Y. Y., Wichser, A., Nuesch,F., Wick, P. and Wang, J.: Carbon Nanotubes Released from an Epoxy-Based Nanocomposite: Quantification and Particle Toxicity, Environmental Science & Technology, 49, 17, 10616–23, 2015. DOI: https://doi.org/10.1021/acs.est.5b02750

Rafique, I., Kausar, A., Anwar, Z. and Muhammad, B.: Exploration of Epoxy Resins, Hardening Systems, and Epoxy/Carbon Nanotube Composite Designed for High Performance Materials: A Review, Polymer-Plastics Technology and Engineering, 55, 3, 312–33, 2016. DOI: https://doi.org/10.1080/03602559.2015.1070874

Schlagenhauf, L., Kuo, Y. Y., Bahk, Y. K., N¨uesch, F. and Wang, J.: Decomposition and particle release of a carbon nanotube/epoxy nanocomposite at elevated temperatures, Journal of Nanoparticle Research, 17, 11, 1–11, 2015. DOI: https://doi.org/10.1007/s11051-015-3245-5

Gong, L. X., Zhao, L., Tang, L. C., Liu, H. Y. and Mai, Y. W.: Balanced electrical, thermal and mechanical properties of epoxy composites filled with chemically reduced graphene oxide and rubber nanoparticles, Composites Science and Technology, 121, 104–14, 2015. DOI: https://doi.org/10.1016/j.compscitech.2015.10.023

Pathak, A. K., Borah, M., Gupta, A., Yokozeki, T. and Dhakate, S. R.: Improved mechanical properties of carbon fiber/graphene oxide-epoxy hybrid composites, Composites Science and Technology, 135, 28–38, 2016. DOI: https://doi.org/10.1016/j.compscitech.2016.09.007

Wang, J., Zhao, Y., Ma, F. X., Wang, K., Wang, F. B. and Xia, X. H.: Synthesis of a hydrophilic poly-L-lysine/graphene hybrid through multiple noncovalent interactions for biosensors, Journal of Materials Chemistry B, 1, 10, 1406–13, 2013. DOI: https://doi.org/10.1039/c2tb00454b

Tallury, S. S. and Pasquinelli, M. A.: Molecular dynamics simulations of polymers with stiff backbones interacting with single-walled carbon nanotubes, The Journal of Physical Chemistry B, 114, 2, 9349–55, 2010. DOI: https://doi.org/10.1021/jp101191j

Pan, B. and Xing, B.: Adsorption mechanisms of organic chemicals on carbon nanotubes, Environmental Science & Technology, 42, 24, 9005–13, 2008. DOI: https://doi.org/10.1021/es801777n

Xu, Z., Wei, C., Gong, Y., Chen, Z., Yang, D., Su, H. and Liu, T.: Efficient dispersion of carbon nanotube by synergistic effects of sisal cellulose nano-fiber and graphene oxide, Composite Interfaces, 1–5, 2016. DOI: https://doi.org/10.1080/09276440.2016.1227655

Wang, Y. and Xu, Z.: Interaction mechanism of doxorubicin and SWCNT: protonation and diameter effects on drug loading and releasing, RSC advances, 6, 6, 314–22, 2016. DOI: https://doi.org/10.1039/C5RA20866A

Hua, Z., Qin, Q., Bai, X., Huang, X. and Zhang, Q.: An electrochemical biosensing platform based on 1-formylpyrene functionalized reduced graphene oxide for sensitive determination of phenol, RSC Advances, 6, 30, 25427–34, 2016. DOI: https://doi.org/10.1039/C5RA27563F

Wang, Y., Ren, P., Gu, X., Wen, X., Wang, Y., Guo, X., Waclawik, E. R., Zhu, H. and Zheng, Z.: Probing the mechanism of benzaldehyde reduction to chiral hydrobenzoin on the CNT surface under near-UV light irradiation, Green Chemistry, 18, 6, 1482–7, 2016. DOI: https://doi.org/10.1039/C5GC02168E

L´opez-Lorente, A. I. and Valc´arcel, M. ´ : The third way in analytical nanoscience and nanotechnology: Involvement of nanotools and nanoanalytes in the same analytical process, TrAC Trends in Analytical Chemistry, 75, 1–9, 2016. DOI: https://doi.org/10.1016/j.trac.2015.06.011

Kazemi-Beydokhti, A., Heris, S. Z. and Jaafari, M. R.: Investigation of different methods for cisplatin loading using single-walled carbon nanotube, Chemical Engineering Research and Design, 112, 56–63, 2016. DOI: https://doi.org/10.1016/j.cherd.2016.06.006

Hajibadi, H. and, Nowroozi, A.: Study on the interaction of metallocene catalysts with the surface of carbon nanotubes and its influence on the catalytic properties. Investigation of possible complex structures and the influence on structural and electronic properties, Journal of Organometallic Chemistry, 2016. DOI: https://doi.org/10.1016/j.jorganchem.2016.06.016

Li, J. and Lee, E. C.: Functionalized multi-wall carbon nanotubes as an efficient additive for electrochemical DNA sensor, Sensors and Actuators B: Chemical, 239, 652–9, 2017. DOI: https://doi.org/10.1016/j.snb.2016.08.068

Bal, S. and Samal, S. S.: Carbon nanotube reinforced polymer composites – a state of the art, Bulletin of Materials Science, 30, 4, 379–86, 2007. DOI: https://doi.org/10.1007/s12034-007-0061-2

Chen, Y., Zhang, H. B., Yang, Y., Wang, M., Cao, A. and Yu, Z. Z.: High-Performance Epoxy Nanocomposites Reinforced with Three-Dimensional Carbon Nanotube Sponge for Electromagnetic Interference Shielding, Advanced Functional Materials, 26, 3, 447–55, 2016. DOI: https://doi.org/10.1002/adfm.201503782

Fujigaya, T., Saegusa, Y., Momota, S., Uda, N. and Nakashima, N.: Interfacial engineering of epoxy/carbon nanotubes using reactive glue for effective reinforcement of the composite, Polymer Journal, 48, 2, 183–8, 2016. DOI: https://doi.org/10.1038/pj.2015.98

Bakhtiar, N. S., Akil, H. M., Zakaria, M. R., Kudus, M. H. and Othman, M. B.: New generation of hybrid filler for producing epoxy nanocomposites with improved mechanical properties, Materials & Design, 91, 46–52, 2016. DOI: https://doi.org/10.1016/j.matdes.2015.11.081

Ust¨un, T., Eskizeybek, V. and Avci, A. ¨: Enhanced fatigue performances of hybrid nanoreinforced filament wound carbon/epoxy composite pipes, Composite Structures, 150, 124–31, 2016. DOI: https://doi.org/10.1016/j.compstruct.2016.05.012

Kleinschmidt, A. C., Almeida, J. H., Donato, R. K., Schrekker, H. S., Marques, V. C., Corat, E. J. and Amico, S.C.: Functionalized-Carbon Nanotubes with Physisorbed Ionic Liquid as Filler for Epoxy Nanocomposites. Journal of Nanoscience and Nanotechnology, 16, 9, 9132–40, 2016. DOI: https://doi.org/10.1166/jnn.2016.12906

Randjbaran, E., Zahari, R., Majid, D.L., Sultan, M.T. and Mazlan, N.. Reasons of Adding Carbon Nanotubes into Composite Systems–Review Paper. “Mechanics and Mechanical Engineering”, 21(3), pp.549-568 (2017).

Akhilesh, M., K. Santarao, And M. V. S. Babu. "Thermal Conductivity Of CNT-Wated Nanofluids: A Review." Mechanics and Mechanical Engineering 22.1, 207-220 (2018).

Barkhade T. EXTRACELLULAR BIOSYNTHESIS OF SILVER NANOPARTICLES USING FUNGUS PENICILLIUM SPECIES.” International Journal of Research -GRANTHAALAYAH” 6(1), 277-283 (2018). DOI: 10.5281/Zenodo.1164148

Mohammad S. Al-Ajely, Kareema M. Ziadan, Rafed. M. Al-Bader, PREPARATION AND CHARACTERIZATION OF CALCIUM FLUORIDE NANO PARTICLES FOR DENTAL APPLICATIONS.” International Journal of Research -GRANTHAALAYAH” 6(1), 338-346 (2018). DOI: 10.5281/Zenodo.1167559

Downloads

Published

2018-06-30

How to Cite

Randjbaran, E., Zahari, R. ., Majid, D. L., Sultan, M. T. H., & Mazlan, N. (2018). MECHANICAL PROPERTIES OF DISCONNECTED MULTIWALLED CARBON NANOTUBES AND CARBON NANOTUBE COMPOSITES - A REVIEW PAPER. International Journal of Research -GRANTHAALAYAH, 6(6), 212–225. https://doi.org/10.29121/granthaalayah.v6.i6.2018.1368