REAL POWER LOSS REDUCTION ENHANCED ARTIFICIAL BEE COLONY ALGORITHM
DOI:
https://doi.org/10.29121/granthaalayah.v6.i3.2018.1515Keywords:
Optimal Reactive Power, Transmission Loss, Artificial Bee Colony Algorithm, Genetic Algorithms, Crossover Operator, Particle Swarm OptimizationAbstract [English]
In this paper, Enhanced Artificial Bee Colony (EABC) algorithm is proposed for solving optimal reactive power problem. The projected method assimilates crossover operation from Genetic Algorithm (GA) with artificial bee colony (ABC) algorithm. The EABC strengthens the exploitation phase of ABC as crossover enhances exploration of search space. Projected EABC algorithm has been tested on has been tested on standard IEEE 118 & practical 191 bus test systems and simulation results show clearly about the premium performance of the proposed algorithm in reducing the real power loss.
Downloads
References
O.Alsac, and B. Scott, “Optimal load flow with steady state security”, IEEE Transaction. PAS -1973, pp. 745-751. DOI: https://doi.org/10.1109/TPAS.1974.293972
Lee K Y, Paru Y M, Oritz J L –A united approach to optimal real and reactive power dispatch , IEEE Transactions on power Apparatus and systems 1985: PAS-104 : 1147-1153 DOI: https://doi.org/10.1109/TPAS.1985.323466
A.Monticelli, M .V.F Pereira, and S. Granville, “Security constrained optimal power flow with post contingency corrective rescheduling”, IEEE Transactions on Power Systems: PWRS-2, No. 1, pp.175-182.,1987. DOI: https://doi.org/10.1109/TPWRS.1987.4335095
DeebN, Shahidehpur S.M, Linear reactive power optimization in a large power network using the decomposition approach. IEEE Transactions on power system 1990: 5(2) : 428-435 DOI: https://doi.org/10.1109/59.54549
E. Hobson, “Network consrained reactive power control using linear programming”, IEEE Transactions on power systems PAS -99 (4), pp 868=877, 1980 DOI: https://doi.org/10.1109/TPAS.1980.319715
K.Y Lee, Y.M Park, and J.L Oritz, “Fuel –cost optimization for both real and reactive power dispatches”, IEE Proc; 131C, (3), pp.85-93. DOI: https://doi.org/10.1049/ip-c.1984.0012
M.K. Mangoli, and K.Y. Lee, “Optimal real and reactive power control using linear programming”, Electr.PowerSyst.Res, Vol.26, pp.1-10, 1993. DOI: https://doi.org/10.1016/0378-7796(93)90063-K
C.A. Canizares, A.C.Z.de Souza and V.H. Quintana, “Comparison of performance indices for detection of proximity to voltage collapse”, vol. 11. no.3, pp.1441-1450, Aug 1996.
S.R.Paranjothi, and K.Anburaja, “Optimal power flow using refined genetic algorithm”, Electr.PowerCompon.Syst, Vol. 30, 1055-1063, 2002. DOI: https://doi.org/10.1080/15325000290085343
D. Devaraj, and B. Yeganarayana, “Genetic algorithm based optimal power flow for security enhancement”, IEE proc-Generation. Transmission and. Distribution; 152, 6 November 2005. DOI: https://doi.org/10.1049/ip-gtd:20045234
A. Berizzi, C. Bovo, M. Merlo, and M. Delfanti, “A ga approach to compare or pf objective functions including secondary voltage regulation,” Electric Power Systems Research, vol. 84, no. 1, pp. 187 – 194, 2012. DOI: https://doi.org/10.1016/j.epsr.2011.11.014
C.-F. Yang, G. G. Lai, C.-H. Lee, C.-T. Su, and G. W. Chang, “Optimal setting of reactive compensation devices with an improved voltage stability index for voltage stability enhancement,” International Journal of Electrical Power and Energy Systems, vol. 37, no. 1, pp. 50 – 57, 2012. DOI: https://doi.org/10.1016/j.ijepes.2011.12.003
P. Roy, S. Ghoshal, and S. Thakur, “Optimal var control for improvements in voltage profiles and for real power loss minimization using biogeography based optimization,” International Journal of Electrical Power and Energy Systems, vol. 43, no. 1, pp. 830 – 838, 2012. DOI: https://doi.org/10.1016/j.ijepes.2012.05.032
B. Venkatesh, G. Sadasivam, and M. Khan, “A new optimal reactive power scheduling method for loss minimization and voltage stability margin maximization using successive multi-objective fuzzy lp technique,” IEEE Transactions on Power Systems, vol. 15, no. 2, pp. 844 –851, may 2000. DOI: https://doi.org/10.1109/59.867183
W. Yan, S. Lu, and D. Yu, “A novel optimal reactive power dispatch method based on an improved hybrid evolutionary programming technique,” IEEE Transactions on Power Systems, vol. 19, no. 2, pp. 913 –918, may 2004. DOI: https://doi.org/10.1109/TPWRS.2004.826716
W. Yan, F. Liu, C. Chung, and K. Wong, “A hybrid genetic algorithm interior point method for optimal reactive power flow,” IEEE Transactions on Power Systems, vol. 21, no. 3, pp. 1163 –1169, aug. 2006.
J. Yu, W. Yan, W. Li, C. Chung, and K. Wong, “An unfixed piecewiseoptimalreactive power-flow model and its algorithm for ac-dc systems,”IEEE Transactions on Power Systems, vol. 23, no. 1, pp. 170 –176, feb.2008. DOI: https://doi.org/10.1109/TPWRS.2007.907387
F. Capitanescu, “Assessing reactive power reserves with respect to operating constraints and voltage stability,” IEEE Transactions on Power Systems, vol. 26, no. 4, pp. 2224–2234, nov. 2011.
Z. Hu, X. Wang, and G. Taylor, “Stochastic optimal reactive power dispatch: Formulation and solution method,” International Journal of Electrical Power and Energy Systems, vol. 32, no. 6, pp. 615 – 621,2010. DOI: https://doi.org/10.1016/j.ijepes.2009.11.018
A. Kargarian, M. Raoofat, and M. Mohammadi, “Probabilistic reactive power procurement in hybrid electricity markets with uncertain loads,” Electric Power Systems Research, vol. 82, no. 1, pp. 68 – 80, 2012. DOI: https://doi.org/10.1016/j.epsr.2011.08.019
Zhou Xi-xiang, LiJia-sheng, Yang Sai-liang, The Digital PID Parameter Tuning Based on Chaos Particle Swarm Optimization, Power Electronics, 44(10): 62-64, 2010.
Fei Kang, Junjie Li, Zhenyue Ma, Rosenbrock artificial bee colony algorithm for accurate global optimization of numerical functions, Information Sciences: S0020-0255(11)00198-8, DOI: 10.1016/j.ins.2011.04.024,2011. DOI: https://doi.org/10.1016/j.ins.2011.04.024
TatjanaDavidovic´, DuˇsanRamljak, MilicaˇSelmic´, DuˇsanTeodorovic´, Bee colony optimization for the p-center problem, Computers & Operations Research, 38(2011)1367-1376, 2011. DOI: https://doi.org/10.1016/j.cor.2010.12.002
IonáMaghali Santos de Oliveira, Roberto Schirru, Swarm intelligence of artificial bees applied to In-Core Fuel Management Optimizati, Annals of Nuclear Energy 38(2011)1039-1045,2011. DOI: https://doi.org/10.1016/j.anucene.2011.01.009
D. Karaboga et al. “A comparative study of artificial bee colony algorithm”. Applied Mathematics and Computation, 214(1):108–132, 2009. DOI: https://doi.org/10.1016/j.amc.2009.03.090
G. Zhu et al. “Gbest-guided artificial bee colony algorithm for numerical function optimization”. Applied Mathematics and Computation, 217(7):3166–3173, 2010. DOI: https://doi.org/10.1016/j.amc.2010.08.049
J. H. Holland. “Outline for a logical theory of adaptive systems”. Journal of the ACM, 3:297–314, 1962. DOI: https://doi.org/10.1145/321127.321128
Talbi, El-Ghazali. “Metaheuristics: from design to implementation”. Vol. 74. John Wiley & Sons, 2009. DOI: https://doi.org/10.1002/9780470496916
Bansal, J. C. et al. “Information Sharing Strategy among Particles in Particle Swarm Optimization Using Laplacian Operator”, Swarm Intelligence Symposium, 2009. IEEE, pages 30-36. DOI: https://doi.org/10.1109/SIS.2009.4937841
Wright, “A. Genetic Algorithms for Real Parameter Optimization, Foundations of Genetic Algorithms”, G. Rswlins (Ed.), Morgen Kaufmann publishers, CA, 1991, pp. 205-218. DOI: https://doi.org/10.1016/B978-0-08-050684-5.50016-1
IEEE, “The IEEE 30-bus test system and the IEEE 118-test system”, (1993),
http://www.ee.washington.edu/trsearch/pstca/.
Jiangtao Cao, Fuli Wang and Ping Li, “An Improved Biogeography-based Optimization Algorithm for Optimal Reactive Power Flow”, International Journal of Control and Automation Vol.7, No.3 (2014), pp.161-176.
Downloads
Published
How to Cite
Issue
Section
License
With the licence CC-BY, authors retain the copyright, allowing anyone to download, reuse, re-print, modify, distribute, and/or copy their contribution. The work must be properly attributed to its author.
It is not necessary to ask for further permission from the author or journal board.
This journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge.