DAIRY INDUSTRIAL HYGIENE: A REVIEW ON BIOFILM CHALLENGES AND CONTROL

Authors

  • Ismail T. Kabwanga Department of Dairy Technology, Ankara University, Turkey
  • Atila Yetişemiyen Department of Dairy Technology, Ankara University, Turkey
  • Shakira Nankya Department of Dairy Technology, Ankara University, Turkey

DOI:

https://doi.org/10.29121/granthaalayah.v6.i2.2018.1570

Keywords:

Dairy Industry, Biofilm, Contamination, Challenges

Abstract [English]

The development of biofilms and the microbial biofilm adherence into the production equipment and facilities used in the dairy industry is a critical issue that needs to be addressed. Biofilms lead to the contamination of food by pathogenic and spoilage m/os. The microbes cause both company loses due to unsafe spoilt products, equipment depreciation and death of consumers under severe pathogenic out breaks. Biofilms may also lead to a failure of anti- microbial therapy hence major threats to modern medicine. Biofilm formation however is a dynamic process with different mechanisms involved in the biofilm growth. Raw milk provides an ideal medium for the formation of a biofilm as it contains bacteria and is nutrient-rich. This paper gives highlights regarding microbial sources, challenges, biofilm control strategies that include but not limited to physical, mechanical, enzymatic and chemical methods for the effective control of formation and or eradicate biofilm in the dairy industry.

Downloads

Download data is not yet available.

References

Wang, W., et al., Prevalence, serotype diversity, biofilm-forming ability and eradication of Listeria monocytogenes isolated from diverse foods in Shanghai, China. Food Control, 2017. 73: p. 1068-1073. DOI: https://doi.org/10.1016/j.foodcont.2016.10.025

Satpathy, S., et al., Review on bacterial biofilm: an universal cause of contamination. Biocatalysis and Agricultural Biotechnology, 2016. 7: p. 56-66. DOI: https://doi.org/10.1016/j.bcab.2016.05.002

Srey, S., I.K. Jahid, and S.-D. Ha, Biofilm formation in food industries: a food safety concern. Food control, 2013. 31(2): p. 572-585. DOI: https://doi.org/10.1016/j.foodcont.2012.12.001

Clutterbuck, A., et al., Biofilms and their relevance to veterinary medicine. Veterinary microbiology, 2007. 121(1-2): p. 1-17. DOI: https://doi.org/10.1016/j.vetmic.2006.12.029

Lee, S., et al., Effect of peracetic acid on biofilms formed by Staphylococcus aureus and Listeria monocytogenes isolated from dairy plants. Journal of dairy science, 2016. 99(3): p. 2384-2390. DOI: https://doi.org/10.3168/jds.2015-10007

Martins, E.A. and P.M.L. Germano, Listeria monocytogenes in ready-to-eat, sliced, cooked ham and salami products, marketed in the city of São Paulo, Brazil: Occurrence, quantification, and serotyping. Food Control, 2011. 22(2): p. 297-302. DOI: https://doi.org/10.1016/j.foodcont.2010.07.026

Nilsson, R.E., T. Ross, and J.P. Bowman, Variability in biofilm production by Listeria monocytogenes correlated to strain origin and growth conditions. International Journal of Food Microbiology, 2011. 150(1): p. 14-24. DOI: https://doi.org/10.1016/j.ijfoodmicro.2011.07.012

Farizoglu, B. and S. Uzuner, The investigation of dairy industry wastewater treatment in a biological high performance membrane system. Biochemical Engineering Journal, 2011. 57: p. 46-54. DOI: https://doi.org/10.1016/j.bej.2011.08.007

Bordi, C. and S. de Bentzmann, Hacking into bacterial biofilms: a new therapeutic challenge. Annals of intensive care, 2011. 1(1): p. 19. DOI: https://doi.org/10.1186/2110-5820-1-19

Flemming, H.-C. and H. Ridgway, Biofilm control: conventional and alternative approaches. 2008. DOI: https://doi.org/10.1007/7142_2008_20

Abdallah, M., et al., Biofilm formation and persistence on abiotic surfaces in the context of food and medical environments. Archives of microbiology, 2014. 196(7): p. 453-472. DOI: https://doi.org/10.1007/s00203-014-0983-1

Cos, P., et al., Biofilms: an extra hurdle for effective antimicrobial therapy. Current pharmaceutical design, 2010. 16(20): p. 2279-2295. DOI: https://doi.org/10.2174/138161210791792868

Römling, U. and C. Balsalobre, Biofilm infections, their resilience to therapy and innovative treatment strategies. Journal of internal medicine, 2012. 272(6): p. 541-561. DOI: https://doi.org/10.1111/joim.12004

Sosnowski, A., et al., Remote regions, remote data: A spatial investigation of precipitation, dynamic land covers, and conflict in the Sudd wetland of South Sudan. Applied Geography, 2016. 69: p. 51-64. DOI: https://doi.org/10.1016/j.apgeog.2016.02.007

Bremer, P.J., S. Fillery, and A.J. McQuillan, Laboratory scale Clean-In-Place (CIP) studies on the effectiveness of different caustic and acid wash steps on the removal of dairy biofilms. International journal of food microbiology, 2006. 106(3): p. 254-262. DOI: https://doi.org/10.1016/j.ijfoodmicro.2005.07.004

Nam, H., et al., Efficacy of gaseous chlorine dioxide in inactivating Bacillus cereus spores attached to and in a biofilm on stainless steel. International journal of food microbiology, 2014. 188: p. 122-127. DOI: https://doi.org/10.1016/j.ijfoodmicro.2014.07.009

Raza, A., et al., Biofilm producing Staphylococcus aureus and bovine mastitis: a review. Molecular microbiology research, 2013. 3(1). DOI: https://doi.org/10.5376/mmr.2013.03.0001

Vanderhaeghen, W., et al., Invited review: Effect, persistence, and virulence of coagulase-negative Staphylococcus species associated with ruminant udder health. Journal of dairy science, 2014. 97(9): p. 5275-5293. DOI: https://doi.org/10.3168/jds.2013-7775

Jahid, I.K. and S.-D. Ha, A review of microbial biofilms of produce: future challenge to food safety. Food Science and Biotechnology, 2012. 21(2): p. 299-316. DOI: https://doi.org/10.1007/s10068-012-0041-1

Vasudevan, R., Biofilms: microbial cities of scientific significance. J Microbiol Exp, 2014. 1(3): p. 00014. DOI: https://doi.org/10.15406/jmen.2014.01.00014

Flint, S., et al., Bacillus thermoamylovorans–A new threat to the dairy industry–A review. International Dairy Journal, 2017. 65: p. 38-43. DOI: https://doi.org/10.1016/j.idairyj.2016.10.002

Janssens, J.C., et al., Brominated furanones inhibit biofilm formation by Salmonella enterica serovar Typhimurium. Applied and Environmental Microbiology, 2008. 74(21): p. 6639-6648. DOI: https://doi.org/10.1128/AEM.01262-08

Tang, X., et al., The efficacy of different cleaners and sanitisers in cleaning biofilms on UF membranes used in the dairy industry. Journal of Membrane Science, 2010. 352(1-2): p. 71-75. DOI: https://doi.org/10.1016/j.memsci.2010.01.063

Cao, W., et al., Efficiency of slightly acidic electrolyzed water for inactivation of Salmonella enteritidis and its contaminated shell eggs. International Journal of Food Microbiology, 2009. 130(2): p. 88-93. DOI: https://doi.org/10.1016/j.ijfoodmicro.2008.12.021

Augustin, M., et al., Towards a more sustainable dairy industry: Integration across the farm–factory interface and the dairy factory of the future. International Dairy Journal, 2013. 31(1): p. 2-11. DOI: https://doi.org/10.1016/j.idairyj.2012.03.009

Privett, B.J., et al., Antibacterial fluorinated silica colloid superhydrophobic surfaces. Langmuir, 2011. 27(15): p. 9597-9601. DOI: https://doi.org/10.1021/la201801e

Moreau-Marquis, S., G.A. O'toole, and B.A. Stanton, Tobramycin and FDA-approved iron chelators eliminate Pseudomonas aeruginosa biofilms on cystic fibrosis cells. American journal of respiratory cell and molecular biology, 2009. 41(3): p. 305-313. DOI: https://doi.org/10.1165/rcmb.2008-0299OC

Shanks, R.M., et al., Catheter lock solutions influence staphylococcal biofilm formation on abiotic surfaces. Nephrology Dialysis Transplantation, 2006. 21(8): p. 2247-2255. DOI: https://doi.org/10.1093/ndt/gfl170

Tachikawa, M., K. Yamanaka, and K. Nakamuro, Studies on the disinfection and removal of biofilms by ozone water using an artificial microbial biofilm system. Ozone: Science & Engineering, 2009. 31(1): p. 3-9. DOI: https://doi.org/10.1080/01919510802586566

Yang, L., et al., Combating biofilms. Pathogens and Disease, 2012. 65(2): p. 146-157.

Blackledge, M.S., R.J. Worthington, and C. Melander, Biologically inspired strategies for combating bacterial biofilms. Current opinion in pharmacology, 2013. 13(5): p. 699-706. DOI: https://doi.org/10.1016/j.coph.2013.07.004

Masák, J., et al., Pseudomonas biofilms: possibilities of their control. FEMS microbiology ecology, 2014. 89(1): p. 1-14. DOI: https://doi.org/10.1111/1574-6941.12344

Meiron, T. and I. Saguy, Adhesion modeling on rough low linear density polyethylene. Journal of food science, 2007. 72(9). DOI: https://doi.org/10.1111/j.1750-3841.2007.00523.x

Memisi, N., et al., CIP cleaning processes in the dairy industry. Procedia Food Science, 2015. 5: p. 184-186. DOI: https://doi.org/10.1016/j.profoo.2015.09.052

Christian, G. and P. Fryer, The effect of pulsing cleaning chemicals on the cleaning of whey protein deposits. Food and Bioproducts Processing, 2006. 84(4): p. 320-328. DOI: https://doi.org/10.1205/fbp06039

Merabishvili, M., et al., Quality-controlled small-scale production of a well-defined bacteriophage cocktail for use in human clinical trials. PloS one, 2009. 4(3): p. e4944. DOI: https://doi.org/10.1371/journal.pone.0004944

Sharma, M., J.H. Ryu, and L. Beuchat, Inactivation of Escherichia coli O157: H7 in biofilm on stainless steel by treatment with an alkaline cleaner and a bacteriophage. Journal of applied microbiology, 2005. 99(3): p. 449-459. DOI: https://doi.org/10.1111/j.1365-2672.2005.02659.x

Curtin, J.J. and R.M. Donlan, Using bacteriophages to reduce formation of catheter-associated biofilms by Staphylococcus epidermidis. Antimicrobial agents and chemotherapy, 2006. 50(4): p. 1268-1275. DOI: https://doi.org/10.1128/AAC.50.4.1268-1275.2006

Sillankorva, S., et al., Bacteriophage Φ S1 infection of Pseudomonas fluorescens planktonic cells versus biofilms. Biofouling, 2004. 20(3): p. 133-138. DOI: https://doi.org/10.1080/08927010410001723834

Hibma, A.M., S.A. Jassim, and M.W. Griffiths, Infection and removal of L-forms of Listeria monocytogenes with bred bacteriophage. International journal of food microbiology, 1997. 34(3): p. 197-207. DOI: https://doi.org/10.1016/S0168-1605(96)01190-7

Augustin, M., T. Ali-Vehmas, and F. Atroshi, Assessment of enzymatic cleaning agents and disinfectants against bacterial biofilms. 2004.

Mootz, J.M., et al., Staphopains modulate Staphylococcus aureus biofilm integrity. Infection and immunity, 2013. 81(9): p. 3227-3238. DOI: https://doi.org/10.1128/IAI.00377-13

Gilan, I. and A. Sivan, Effect of proteases on biofilm formation of the plastic-degrading actinomycete Rhodococcus ruber C208. FEMS microbiology letters, 2013. 342(1): p. 18-23. DOI: https://doi.org/10.1111/1574-6968.12114

Chaignon, P., et al., Susceptibility of staphylococcal biofilms to enzymatic treatments depends on their chemical composition. Applied microbiology and biotechnology, 2007. 75(1): p. 125-132. DOI: https://doi.org/10.1007/s00253-006-0790-y

Downloads

Published

2018-02-28

How to Cite

Kabwanga, I. T., Yetişemiyen, A., & Nankya, S. (2018). DAIRY INDUSTRIAL HYGIENE: A REVIEW ON BIOFILM CHALLENGES AND CONTROL. International Journal of Research -GRANTHAALAYAH, 6(2), 268–273. https://doi.org/10.29121/granthaalayah.v6.i2.2018.1570