• Dr.K.Lenin Professor, Department of EEE, Prasad V.Potluri Siddhartha Institute of Technology, Kanuru, Vijayawada, Andhra Pradesh -520007, India



Particle Swarm Optimization, Cauchy Mutation, Optimal Reactive Power, Transmission Loss

Abstract [English]

In this paper Better-Quality Particle Swarm Optimization (BPSO) algorithm is proposed to solve the optimal reactive power Problem. Proposed algorithm is obtained by combining particle swarm optimization (PSO), Cauchy mutation and an evolutionary selection strategy. The idea is to introduce the Cauchy mutation into PSO in the hope of preventing PSO from trapping into a local optimum through long jumps made by the Cauchy mutation. In order to evaluate the efficiency of the proposed Better-Quality Particle Swarm Optimization (BPSO) algorithm, it has been tested on IEEE 57 bus system. Simulation Results show’s that BPSO is more efficient than other reported algorithms in reducing the real power loss.


Download data is not yet available.


O.Alsac, and B. Scott, “Optimal load flow with steady state security”, IEEE Transaction. PAS -1973, pp. 745-751. DOI:

Lee K Y ,Paru Y M , Oritz J L –A united approach to optimal real and reactive power dispatch , IEEE Transactions on power Apparatus and systems 1985: PAS-104 : 1147-1153 DOI:

A.Monticelli , M .V.F Pereira ,and S. Granville , “Security constrained optimal power flow with post contingency corrective rescheduling” , IEEE Transactions on Power Systems :PWRS-2, No. 1, pp.175-182.,1987. DOI:

Deeb N, Shahidehpur S.M, Linear reactive power optimization in a large power network using the decomposition approach. IEEE Transactions on power system 1990: 5(2) : 428-435 DOI:

E. Hobson ,’Network consrained reactive power control using linear programming, ‘ IEEE Transactions on power systems PAS -99 (4) ,pp 868=877, 1980 DOI:

K.Y Lee, Y.M Park , and J.L Oritz, “Fuel –cost optimization for both real and reactive power dispatches” , IEE Proc; 131C,(3), pp.85-93. DOI:

M.K. Mangoli, and K.Y. Lee, “Optimal real and reactive power control using linear programming” , Electr.Power Syst.Res, Vol.26, pp.1-10,1993. DOI:

K.Anburaja, “Optimal power flow using refined genetic algorithm”, Electr.Power Compon.Syst, Vol. 30, 1055-1063, 2002. DOI:

D. Devaraj, and B. Yeganarayana, “Genetic algorithm based optimal power flow for security enhancement”, IEE proc-Generation.Transmission and. Distribution; 152, 6 November 2005. DOI:

C.A. Canizares, Souza and V.H. Quintana, “Comparison of performance indices for detection of proximity to voltage collapse,’’ vol. 11. no.3, pp.1441-1450, Aug 1996.

J. Kennedy and R. C. Eberhart, Particle Swarm Optimization, IEEE International Conference on Neural Networks, pp.1942-1948, 1995.

R. C. Eberhart and J. Kennedy, A New Optimizer Using Particle Swarm Theory, Proceedings of the 6th International Symposium on Micro Machine and Human Science, pp.39-43, 1995.

A. Ratnaweera, S. K. Halgamuge, and H. C. Watson, Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients, IEEE Transactions on Evolutionary Computation, vol. 8,no. 3, pp. 240–255, 2004. DOI:

J. Sun, B. Feng, W. Xu, Particle swarm optimization with particles having quantum behavior, in Jing Liu, Wenbo Xu, Jun Sun, Quantum-behaved particle swarm optimization with mutation operator. Proceedings of the 17th IEEE International Conference on Tools with Artificial Intelligence Pages: 237 - 240 , 2005

R. A. Krohling, Gaussian particle swarm with jumps, in Proceedings of the IEEE Congress on Evolutionary Computation, Edinburgh, UK,pp. 1226-1231, 2005.

R. A. Krohling, L. dos Santos Coelho, PSO-E: Particle Swarm with Exponential Distribution , in Proceedings of the IEEE Congress on Evolutionary Computation, pp1428- 1433, July 2006.

H. Narihisa, T. Taniguchi, M. Ohta, and K. Katayama, Evolutionary Programming with Exponential Mutation, in Proceedings of the IASTED Artificial Intelligence and soft Computing, Benidorn, Spain, pp. 55-50, 2005.

X. Yao and Y. Liu. Fast evolutionary programming, Proc. of the Fifth Annual Conference on Evolutionary Programming (EP'96), San Diego, CA, USA, 29/2-2/3/96. (1996).451-460, the MIT Press.

X. Yao, Y. Liu, G. Lin, Evolutionary programming made faster. IEEE Trans. Evolutionary Computation 82–102, 1999. DOI:

M. Clerc and J. Kennedy, the Particle Swarm: Explosion, Stability and Convergence in a Multi-Dimensional Complex Space, IEEE Trans. on Evolutionary Computation, Vol.6, pp: 58-73, 2002.

G. Pampara, N. Franken, A. P. Engelbrecht, Combining Particle Swarm Optimisation with angle modulation to solve binary problems. In proceedings of the IEEE Congress on Evolutionary Computation, pages 89- 96, Sept. 2005.

F. van den Bergh. An Analysis of Particle Swarm Optimizers. PhD thesis, Department of Computer Science, University of Pretoria, South Africa, 2002.

Chaohua Dai, Weirong Chen, Yunfang Zhu, and Xuexia Zhang, “Seeker optimization algorithm for optimal reactive power dispatch,” IEEE Trans. Power Systems, Vol. 24, No. 3, August 2009, pp. 1218-1231. DOI:

J. R. Gomes and 0. R. Saavedra, “Optimal reactive power dispatch using evolutionary computation: Extended algorithms,” IEE Proc.-Gener. Transm. Distrib. Vol. 146, No. 6. Nov. 1999. DOI:

Proceedings of the IEEE Congress on Evolutionary Computation, Portland, Oregon USA, pp. 325-331, 2004.




How to Cite


Most read articles by the same author(s)

1 2 3 4 5 6 7 > >>