DRYING EFFECTS ON ULTRASONIC ASSISTED PHENOLIC YIELDS AND RETENTIVENESS OF ANTIRADICAL PROPERTIES OF COMMON CULINARY SPICES GINGER (ZINGIBER OFFICINALE) AND TURMERIC (CURCUMA LONGO): HPTLC AND GC - MS PROFILE FOR THEIR ACTIVE INGREDIENTS ASSESSMENT

Authors

  • Nagarajan Leebanon Poonkuil Department of Chemistry, Manonmaniam Sundaranar University, Tirunelveli, 627 062 Tamil Nadu, India
  • J. Dhaveethu Raja Chemistry Research Centre, Mohamed Sathak Engineering College, Kilakarai, 623 806 Tamil Nadu, India

DOI:

https://doi.org/10.29121/granthaalayah.v5.i9(SE).2017.2246

Keywords:

Ginger, Turmeric, Phenolics, Drying, Antiradical Activity

Abstract [English]

The effect of drying on antiradical activity of Zingiber officinale (ginger) and Curcuma longo (turmeric) were studied by total phenolic content (TPC), total reducing power (TRP), 2,2'-azino-bis(3-ethyl benz thiazoline-6-sulphonicacid) (ABTS), 2,2-Diphenyl-1-picrylhydrazyl (DPPH) and superoxide radical scavenging assays. Comparing fresh and dried rhizome, optimum antiradical activity was observed in dry ginger and in fresh turmeric. The drying phenomenon diminished the scavenging capacity especially in turmeric and also ginger rhizome was exhibited highest superoxide radical scavenging solely at fresh state. The extraction parameters were standardized for maximum recovery of phenolics. The Zingiberene of ginger and curcumin of turmeric rummaged the free radicals energetically.

Downloads

Download data is not yet available.

References

Jovanovic, S.V.; Simic, M.G. Antioxidants in nutrition. Ann. N. Y. Acad. Sci. 2000, 899, 326–334. DOI: https://doi.org/10.1111/j.1749-6632.2000.tb06197.x

Stanner, S.A.; Hughes, J.; Kelly, C.N.M.; Buttriss, J. A Review of the epidemiological evidence for the antioxidant hypothesis. Public Health Nutr. 2004, 7, 407–422.

Sasikumar, B. Turmeric. In Handbook of Herbs and Spices; Peter, K. V., Eds.; Woodhead Publishing: Cambridge, 2012; 526–546. DOI: https://doi.org/10.1533/9780857095671.526

Cai, Y.; Luo, Q.; Sun, M.; Corke, H. Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sci. 2004, 74, 2157–2184.

Chanda, S.; Dave, R. In vitro models for antioxidant activity evaluation and some medicinal plants possessing antioxidant properties: An Overview. Afr. J. Microbiol. Res. 2009, 3, 981–996.

Chen, I.N.; Chang, C.C.; Ng, C.C.; Wang, C.Y.; Shyu, Y.T.; Chang, T.L. Antioxidant and antimicrobial activity of Zingiberaceae plants in Taiwan. Plant Foods Hum Nutr. 2008, 63, 15–20.

Verghese, J. Curcuminoids, the magic dye of C. longa L. rhizome. Indian Spices. 1999, 36, 19–26.

Hossain, M.; Brunton, N.; Barry-Ryan, C.; Martin-Diana, A.B.; Wilkinson, M. Antioxidant activity of spice extracts and phenolics in comparison to synthetic antioxidants. Rasayan J. Chem. 2008, 1,751–756.

Prencipe, F.P.; Bruni, R.; Guerrini, A.; Rossi, D.; Benvenuti, S.; Pellati, F. Metabolite profiling of polyphenols in Vaccinium berries and determination of their chemopreventive properties. J Pharm Biomed Anal. 2014, 89, 257–267.

Kocaadam, B.; Sanlier, N. Curcumin, an active component of Turmeric (Curcuma longa), and its effects on health. Crit Rev Food Sci Nutr. 2015, 0, 0–0. [in press].

Gumusay, O.A.; Borazan, A.A.; Ercal, N.; Demirkol, O. Drying effects on the antioxidant properties of tomatoes and ginger. Food Chem. 2015, 173, 156–162.

de Abreu, W.C.; Barcelos, M.D.F.P.; de Barros Vilas Boas, E.V.; da Silva, E.P. Total Antioxidant Activity of Dried Tomatoes Marketed in Brazil. Int J Food Prop. 2014, 17, 639–649.

Yu, Z.F.; Kong, L.D.; Chen, Y. Antidepressant activity of aqueous extracts of Curcuma longa in mice. J Ethnopharmacol. 2002, 83, 161–165.

Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic, 1965, 16, 144–158.

Stratil, P.; Klejdus, B.: Kubanhacek, V. Determination of total content of phenolic compounds and their antioxidant activity in vegetables-Evaluation of spectrophotometric methods. J. Agric. Food Chem. 2006, 54, 607–616.

Pulido, R.; Bravo, L.; Saura-Calixto, F. Antioxidant activity of dietary polyphenols as determined by a modified ferric reducing/antioxidant power assay. J. Agric. Food Chem. 2000, 48, 3396–3402.

Saito, S.; Kawabata, J. Effects of electron-withdrawing substituent on DPPH radical Scavenging reactions of protocatechuic acid and its analogues in alcoholic solvents. Tetrahedron. 2005, 61, 8101–8108.

Cotelle, N.; Bernier, J.L.; Catteau, J.P.; Pommery, J.; Wallet, J.C.; Gaydou, E.M. Antioxidant properties of hydroxy-flavones. Free Radic. Biol. Med. 1996, 20, 35–43. DOI: https://doi.org/10.1016/0891-5849(95)02014-4

Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237.

Karlsson, J. Exercise, muscle metabolism and the antioxidant defense. World Rev Nutr Diet. 1997, 82, 81–100.

Huie, R.E.; Padmaja, S. The reaction of no with superoxide. Free Radic Res Commun. 1993, 18, 195–199.

Koleva, I.I.; Van Beek, T.A.; Linssen, J.P.H.; De Groot, A.; Evstatieva, L.N. Screening the plant extracts for antioxidant activity: a comparative study on three testing methods. Phytochem. Anal. 2002, 13, 8–17.

Jiang, H.; Somogyi, A.; Timmermann, B.N.; Gang, D.R. Instrument dependence of electrospray ionization and tandem mass spectrometric fragmentation of the gingerols. Rapid Commun Mass Spectrom. 2006, 20, 3089–3100.

Kahkonen, M.P.; Hopia, A.I.; Vuorela, H.J.; Rauha, J.P.; Pihlaja, K.; Kujala, T.S.; Heinonen, M. Antioxidant activity of plant extracts containing phenolic compounds. J. Agric. Food Chem. 1999, 47, 3954–3962.

Jiang, H.; Somogyi, A.; Jacobsen, N.E.; Timmermann, B.N.; Gang, D.R. Analysis of curcuminoids by positive and negative electrospray ionization and tandem mass spectrometry. Rapid Commun Mass Spectrom. 2006, 20, 1001–1012.

Jiang, H.; Timmermann, B.N.; Gang, D.R. Use of liquid chromatography - electrospray ionization tandem mass spectrometry to identify diarylheptanoids in turmeric (Curcuma longa L.) rhizome. J Chromatogr A. 2006, 1111, 21–31.

Jiang, H.; Solyom, A.M.; Timmermann, B.N.; Gang, D.R. Characterization of gingerol-related compounds in ginger rhizome (Zingiber officinale Rosc.) by High Performance liquid chromatography/electrospray ionization mass spectrometry. Rapid Commun Mass Spectrom. 2005, 19, 2957–2964.

Xie, Z.; Ma, X.; Gang, D.R. Modules of co-regulated metabolites in turmeric (Curcuma longa) rhizome suggest the existence of biosynthetic modules in plant specialized metabolism, J. Exp. Bot. 2009, 60, 87–97.

Shahidi, F.; Janitha, P.K.; Wanasundara, P.D. Phenolic antioxidants. Crit Rev Food Sci Nutr. 1992, 32, 67–103. DOI: https://doi.org/10.1080/10408399209527581

Prieto, P.; Pineda, M.; Aguilar, M. Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: Specific application to the determination of vitamin E. Anal Biochem. 1999, 269, 337–341.

Dehghannya, J.; Gorbani, R.; Ghanbarzadeh, B. Shrinkage of Mirabelle Plum during Hot Air Drying as Influenced by Ultrasound-Assisted Osmotic Dehydration. Int J Food Prop. 2016, 19, 1093–1103.

Kapoor, S.; Aggarwal, P. Drying Method Affects Bioactive Compounds and Antioxidant Activity of Carrot. Int. J. Veg. Sci. 2015, 21, 467–481.

Chong, C. H.; Law, C. L.; Figiel, A.; Wojdylo, A.; Oziemblowski, M. Colour, phenolic content and antioxidant capacity of some fruits dehydrated by a combination of different methods. Food Chem. 2013, 141, 3889–3896.

Kamiloglu, S.; Capanoglu, E. Polyphenol Content in Figs (Ficus carica L.): Effect of Sun-Drying. Int J Food Prop. 2015, 18, 521–535.

Yeap, Y.S.Y.; Kassim, N.K.; Ng, R.C.; Ee, G.C.L.; Saiful Yazan, L.; Musa, K.H. Antioxidant properties of ginger (Kaempferia angustifolia Rosc.) and its chemical markers. Int J Food Prop. 2017, 0, 1–15 (in press).

Lee, S.K.; Mbwambo, Z.H.; Chung, H.; Luyengi, L.; Gamez, E.J.; Mehta, R.G.; Kinghorn, A.D.; Pezzuto, J.M. Evaluation of the antioxidant potential of natural products. Comb Chem High Throughput Screen. 1998, 1, 35–46.

Bayr, H. Reactive oxygen species. Crit. Care Med. 2005, 33, S498–S501.

Sanchez-Moreno, C.; Larrauri, J.A.; Saura-Calixto, F. A procedure to measure the antiradical efficiency of polyphenols. J. Sci. Food Agric. 1998, 76, 270–276.

Aruoma, O.I.; Murcia, A.; Butler, J.; Halliwell, B. Evaluation of the antioxidant and prooxidant actions of gallic acid and its derivatives. J. Agric. Food Chem. 1993, 41, 1880–1885.

Branen, A.L. Toxicology and biochemistry of butylated hydroxyanisole and butylated hydroxytoluene. J Am Oil Chem Soc. 1975, 52, 59–63.

Shao, H.B.; Chu, L.Y.; Lu, Z.H.; Kang, C.M. Primary antioxidant free radical scavenging redox signaling pathways in higher plant cells. Int J Biol Sci. 2008, 4, 8–14.

Vashisth, T.; Singh, R.K.; Pegg R.B. Effects of drying on the phenolic content and antioxidant activity of muscadine pomace. LWT - Food Sci Technol. 2011, 44, 1649–1657.

Methakhup, S.; Chiewchan, N.; Devahastin, S. Effects of drying methods and conditions on drying kinetics and quality of Indian gooseberry flake. LWT - Food Sci Technol. 2005, 38, 579–587.

Osman, A.M.; Wong, K.K.Y.; Fernyhough, A. The laccase/ABTS system oxidizes (+)-catechin to oligomeric products. Enzyme Microb Technol. 2007, 40, 1272–1279.

Blois, M.S. Antioxidants determination by the use of a stable free radical. Nature. 1958, 181, 1199–1200.

Maxwell, S.R.J. Prospects for the use of antioxidant therapies. Drugs. 1995, 49, 345–361.

Li, J.; Wang, Y.; Ma, H.; Hao, J.; Yang, H. Comparison of chemical components between dry and fresh Zingiber officinale. Zhongguo Zhong Yao Za Zhi. 2001, 26, 748–751.

Ramirez-Ahumada, M.D.C.; Timmermann, B.N.; Gang, D.R. Biosynthesis of curcuminoids and gingerols in Turmeric (Curcuma longa) and Ginger (Zingiber officinale): Identification of curcuminoid synthase and hydroxycinnamoyl-CoA thioesterases. Phyto chemistry. 2006, 67, 2017–2029.

Demarchi, S.M.; Quintero Ruiz, N.A.; Concellon, A.; Giner, S.A. Effect of temperature on hot-air drying rate and on retention of antioxidant capacity in apple leathers. Food Bioprod Process. 2013, 91, 310–318.

Miranda, M.; Maureira, H.; Rodriguez, K. Vega-Galvez, A. Influence of temperature on the drying kinetics, physicochemical properties and antioxidant capacity of Aloe Vera (Aloe Barbadensis Miller) gel. J. Food Eng. 2009, 91, 297–304.

Kuljarachanan, T.; Devahastin, S.; Chiewchan, N. Evolution of antioxidant compounds in lime residues during drying. Food Chem. 2009, 113, 944–949.

Katsube, T.; Tsurunaga, Y.; Sugiyama, M.; Furuno, T.; Yamasaki, Y. Effect of air-drying temperature on antioxidant capacity and stability of polyphenolic compounds in mulberry (Morus alba L.) leaves. Food Chem. 2009, 113, 964–969.

Poonam Khatri, J.S.; Rana Pragati Jamdagni.; Anil Sindhu. Phytochemical screening, GC-MS and FT-IR analysis of methanolic extract leaves of Elettaria cardamomum. International journal of research – Granthaalayah. 2017, 5, 213-224.

Aziz, S.; Hassan, S.M.; Nandi, S.; Naher, S.; Roy, S.K.; Sarkar, R.P.; Hossain, H. Comparative studies on physicochemical properties and GC-MS analysis of essential oil of the two varieties of ginger (Zingiber officinale). Int. J. Pharm. Phytopharm. Res. 2017, 1, 367–370.

Koch, W.; Kukula-Koch, W.; Marzec, Z.; Kasperek, E.; Wyszogrodzka-Koma, L.; Szwerc, W.; Asakawa, Y. Application of Chromatographic and Spectroscopic Methods towards the Quality Assessment of Ginger (Zingiber officinale) Rhizomes from Ecological Plantations. Int. J. Mol. Sci. 2017, 18, 452.

Ahui, M.L.B.; Konan, A.B.; Zannou-Tchoko, V.J.; Amonkan, A.K.; KatiCoulibaly, S.; Offoumou, M.A. Identification of Gingerols in Ginger (Zingiber officinale Roscoe) by high performance liquid chromatography-tandem mass spectrometry and pharmacologic studies of its aqueous extract on the rabbit isolated duodenum contractility. J. Phys Pharm Adv. 2013, 3, 16–26.

Patel, K.; Krishna, G.; Sokoloski, E.; Ito, Y. Preparative separation of curcuminoids from crude curcumin and turmeric powder by pH-zone-refining countercurrent chromatography. J. Liq. Chrom. & Rel. Technol. 2000, 23, 2209–2218.

Ali, I., Haque, A.; Saleem, K. Separation and identification of curcuminoids in turmeric powder by HPLC using phenyl column. Anal. Methods. 2014, 6, 2526–2536.

Sahne, F; Mohammadi, M.; Najafpour, G.D.; Moghadamnia, A.A. Enzyme assisted ionic liquid extraction of bioactive compound from turmeric (Curcuma longa L.): Isolation, purification and analysis of curcumin. Ind Crops Prod. 2017, 95, 686–694.

Lee, K.J.; Kim, Y.S.; Ma, J.Y. Separation and Identification of Curcuminoids from Asian turmeric (Curcuma longa L.) using RP-HPLC and LC-MS. Asian J. Chem. 2013, 25, 909–912.

Xu, G.; Hao, C.; Tian, S.; Gao, F.; Sun, W.; Sun, R. A method for the preparation of curcumin by ultrasonic-assisted ammonium sulfate/ethanol aqueous two phase extraction. J. Chromatogr. B. 2017, 1041-1042, 167–174.

Niamnuy, C.; Devahastin, S.; Soponronnarit, S. Some recent advances in micro Structural modification and monitoring of foods during drying: A review. J. Food Eng. 2014, 123, 148–156.

Downloads

Published

2017-09-30

How to Cite

Poonkuil, N. L., & Raja, J. D. (2017). DRYING EFFECTS ON ULTRASONIC ASSISTED PHENOLIC YIELDS AND RETENTIVENESS OF ANTIRADICAL PROPERTIES OF COMMON CULINARY SPICES GINGER (ZINGIBER OFFICINALE) AND TURMERIC (CURCUMA LONGO): HPTLC AND GC - MS PROFILE FOR THEIR ACTIVE INGREDIENTS ASSESSMENT. International Journal of Research -GRANTHAALAYAH, 5(9(SE), 7–23. https://doi.org/10.29121/granthaalayah.v5.i9(SE).2017.2246