DETECTION AND QUANTITATION OF RED COMPLEX BACTERIA IN SUBGINGIVAL PLAQUE BY USING FLUORESCENT IN SITU HYBRIDIZATION (FISH)

Authors

  • Dr. Kishore G. Bhat Maratha Mandal’s Central Research Laboratory, Maratha Mandal’s NGH Institute of Dental Sciences & Research Centre, Belgaum,Karanataka, India
  • Dr AradhanaChhatre Maratha Mandal’s Central Research Laboratory, Maratha Mandal’s NGH Institute of Dental Sciences & Research Centre, Belgaum,Karanataka, India
  • Mr. Vijay M. Kumbar Maratha Mandal’s Central Research Laboratory, Maratha Mandal’s NGH Institute of Dental Sciences & Research Centre, Belgaum,Karanataka, India
  • Mr. Manohar S. Kugaji Maratha Mandal’s Central Research Laboratory, Maratha Mandal’s NGH Institute of Dental Sciences & Research Centre, Belgaum,Karanataka, India
  • Mrs. SanjeevaniPatil Maratha Mandal’s Central Research Laboratory, Maratha Mandal’s NGH Institute of Dental Sciences & Research Centre, Belgaum,Karanataka, India

DOI:

https://doi.org/10.29121/granthaalayah.v5.i11.2017.2354

Keywords:

Fish, P. Gingivalis, T. Denticola, T. Forsythia, Periodontitis

Abstract [English]

Motivation/Background: Red complex bacteria are proven periodontal pathogens. In dentistry, there is a need to identify and quantitate the organisms from the diseased sites quickly and reliably. Since culture requires several days, molecular methods are being used frequently to detect these bacteria.  Among them, Fluorescent in situ hybridization (FISH) is rapid, sensitive and quantitative. An attempt is made here to evaluate the applicability of this technique as a diagnostic tool in periodontology.


Method: Subgingival plaque was collected from participants, fixed with paraformaldehyde and subjected to FISH. Fluorescently labeled oligonucleotide probes were used for hybridization. After the procedure, the fluorescently stained bacteria were identified and counted from the smear and quantitated using a simple grading.


Results: There was a significant difference in the prevalence and numbers of red complex bacteria in healthy and diseased subjects. A strong linear relationship existed between P. gingivalis, T. forsythia and T. denticola.


Conclusions: The procedure used in the study is simple, rapid and can be easily adaptable. It also has a high sensitivity and has the ability to detect a single bacterial cell. The method can be directly applied to the clinical samples and can be used as a rapid diagnostic tool in periodontics.

Downloads

Download data is not yet available.

References

Slots J. Periodontology: Past, Present, Perspectives. Periodontol 2000, 62, 2013; 7-19. DOI: https://doi.org/10.1111/prd.12011

Paster BJ, Olsen J, Aas JA, Dewhirst FE. The breadth of bacterial diversity in the human periodontal pocket and other oral sites. Periodontol 2000, 42, 2006; 80-87. DOI: https://doi.org/10.1111/j.1600-0757.2006.00174.x

Socransky SS, Haffajee AD, Cugini MA, Smith C, Kent jr RL. Microbial complexes in subgingival plaque. J ClinPeriodontol. 25, 1998; 134-144. DOI: https://doi.org/10.1111/j.1600-051X.1998.tb02419.x

Gmur R, Strub JR, Guggenheim B. Prevalence of Bacteroidesforsythus and Bacteroidesgingivalis in subgingival plaque of prosthodontically treated patients on short recall. J Periodontol Res. 113, 1989; 113-120. DOI: https://doi.org/10.1111/j.1600-0765.1989.tb00865.x

Holt SC, Ebersole JL. Porphyromonasgingivalis, Treponema denticola and Tanerella forsythia: the ‘red complex’, a prototype polybacterial consortium in periodontitis. Periodontol 2000, 38, 2005; 72-122. DOI: https://doi.org/10.1111/j.1600-0757.2005.00113.x

Paster BJ, Dewhirst FE. Molecular microbial diagnosis. Periodontol 2000, 51, 2009; 38-44. DOI: https://doi.org/10.1111/j.1600-0757.2009.00316.x

Amann R, Fuchs BM. Single cell identification in microbial communities by improved fluorescence in situ hybridization techniques. Nature rev. 2008; 339-348. DOI: https://doi.org/10.1038/nrmicro1888

Klug B, Rodler C, Koller M, Wimmer G, Kessler H, Grube M et al. Oral biofilm analysis of palatal expanders by Fluorescence In-Situ Hybridization and Confocal Laser Scanning Microscopy. J Vis Exp 2011; 56: e2967, DOI: 10.3791/2967. DOI: https://doi.org/10.3791/2967

Greuter D, Loy A, Horn M, Rattie T. Probebase- an online resource for rRNA targeted oligonucleotide probes and primers: new features 2016. Nucl acids res. 44(D1), 2016; D586-D589. DOI: https://doi.org/10.1093/nar/gkv1232

Suzuki N, Yoneda M, Hirofugi T. Mixed red-complex bacterial infection in periodontitis. Int J Dent Res 2013; ID: 587279. DOI: https://doi.org/10.1155/2013/587279

Dashper SG, Seers CA, Reynolds EC. Virulence factors of the oral spirochete Treponema denticola. J Dent Res. 90, 2011; 691-703. DOI: https://doi.org/10.1177/0022034510385242

Ellen RP, Galimanas VB. spirochetes at the forefront of periodontal infections. Periodontol 2000, 38, 2005; 13-32. DOI: https://doi.org/10.1111/j.1600-0757.2005.00108.x

Carrada EA, Scaloni FAR, Cesai OE, Devito KL, Rebeiro LC, Rebeiro RA. Salivary periodontopathic bacteria in children and adolescents with Down syndrome. PLoS ONE 2016; 11: e0162988. DOI: https://doi.org/10.1371/journal.pone.0162988

Kenzaka T, Yamaguchi N, Tani K, Nasa M. rRNA targeted FISH analysis of bacterial community structure in river water. Microbiol, 144, 1998; 2085-2093. DOI: https://doi.org/10.1099/00221287-144-8-2085

Amano A. Host-parasite interactions in periodontitis: Microbial pathogenicity and innate immunity. Periodontol 2000. 54, 2010; 9-14. DOI: https://doi.org/10.1111/j.1600-0757.2010.00376.x

Dzink JL, Socransky SS, Haffajee AD. The predominant cultivable microbiota of active and inactive lesions of destructive periodontal diseases. J ClinPeriodontol, 15, 1988; 316-323. DOI: https://doi.org/10.1111/j.1600-051X.1988.tb01590.x

Sharma A. Virulence mechanisms of Tannerella forsythia. Periodontol 2000. 54, 2010; 106-116. DOI: https://doi.org/10.1111/j.1600-0757.2009.00332.x

Ishihara K. Virulence factors of Treponema denticola. Periodontol 2000, 54, 2010;117-135. DOI: https://doi.org/10.1111/j.1600-0757.2009.00345.x

Deng T, Wang I, Jing L, Pang J, Liu B, Du Y et al. Association of three bacterial species and periodontal status in Chinese adults: an epidemiological approach. J ClinMicrobiol, 49, 2011; 184-188. DOI: https://doi.org/10.1128/JCM.01819-10

Hajishengallis G, Lammont RJ. Beyond the red complex and into more complexity: the polymicrobial synergy and dysbiosis (PSD) model of periodontal disease etiology. Mol Oral Microbiol, 27, 2012; 409-419. DOI: https://doi.org/10.1111/j.2041-1014.2012.00663.x

Sela MN. Role of Treponema denticola in periodontal diseases. Crit Rev Oral Biol Med. 12, 2001; 399-413. DOI: https://doi.org/10.1177/10454411010120050301

Byrne SJ, Dashper SG, Darby IB, Adams GG, Hoffmann B, Reynolds EC. Progression of chronic periodontitis can be predicted by the levels of Porphyromonasgingivalis and Treponema denticola in subgingival plaque. Oral MicrobiolImmunol 2009; 24: 469-477.

Colombo AP, Boches BK, Cotton SL, Goodson JM, Kent R, Haffajee AD et al. Comparison of subgingival microbial profiles of refractory periodontitis, severe periodontitis and periodontal healthusing the human oral microbe. J Perodontol, 80, 2009; 1421-1432. DOI: https://doi.org/10.1902/jop.2009.090185

Mineoka T, Awano S, Kikimaru T, Kurata H, Yoshida A, Ansari T et al. Site specific development of periodontal disease is associated with increased levels of Porphyromonasgingivalis, Treponema denticola and Tannerella forsythia in subgingival plaque. J Periodontol. 79, 2008; 670-676. DOI: https://doi.org/10.1902/jop.2008.070398

Zinge V, Barbara M, van Leeuwen M, Degener JE, Abbas P, Thurnheer T et al. Oral biofilm architecture on natural teeth. PLoS One 2010; 5(2): e9321. DOI: https://doi.org/10.1371/journal.pone.0009321

Mendes L, Rocha R, Azevedo AS, Ferriera C, Henriques M, Pinto MG et al. Novel strategy to detect and locate periodontal pathogens: the PNA-FISH technique. Microbiol Res. 192, 2016; 185-191. DOI: https://doi.org/10.1016/j.micres.2016.07.002

Downloads

Published

2017-11-30

How to Cite

Bhat, K. G., Chhatre, A., Kumbar, V. M., Kugaji, M. S., & Patil, S. (2017). DETECTION AND QUANTITATION OF RED COMPLEX BACTERIA IN SUBGINGIVAL PLAQUE BY USING FLUORESCENT IN SITU HYBRIDIZATION (FISH). International Journal of Research -GRANTHAALAYAH, 5(11), 279–289. https://doi.org/10.29121/granthaalayah.v5.i11.2017.2354