DRAG & AVERSION PARTICLE SWARM OPTIMIZATION ALGORITHM FOR REDUCTION OF REAL POWER LOSS

Authors

  • Dr.K.Lenin Professor,Department of EEE, Prasad V.Potluri Siddhartha Institute of Technology,Kanuru, Vijayawada, Andhra Pradesh -520007, India

DOI:

https://doi.org/10.29121/granthaalayah.v5.i11.2017.2344

Keywords:

Reactive Power Optimization, Real Power Loss, Particle Swarm Optimization, Drag, Aversion

Abstract [English]

This paper projects Drag & Aversion Particle Swarm Optimization (DAPSO) algorithm is applied to solve optimal reactive power problem. In DAPSO the idea of decreasing and increasing diversity operators used to control the population into the basic Particle Swarm Optimization (PSO) model. The modified model uses a diversity measure to have the algorithm alternate between exploring and exploiting behavior. The results show that both Drag & Aversion Particle Swarm Optimization (DAPSO) prevents premature convergence to enhanced level but still keeps a rapid convergence. Proposed Drag & Aversion Particle Swarm Optimization (DAPSO) has been tested in standard IEEE 118 & practical 191 bus test systems. Real power loss has been considerably reduced and voltage profiles are within the limits.

Downloads

Download data is not yet available.

References

O.Alsac, B. Scott, “Optimal load flow with steady state security”, IEEE Transaction. PAS -1973, pp. 745-751. DOI: https://doi.org/10.1109/TPAS.1974.293972

Lee K Y ,Paru Y M , Oritz J L –A united approach to optimal real and reactive power dispatch , IEEE Transactions on power Apparatus and systems 1985: PAS-104 : 1147-1153 DOI: https://doi.org/10.1109/TPAS.1985.323466

A.Monticelli , M .V.F Pereira ,and S. Granville , “Security constrained optimal power flow with post contingency corrective rescheduling” , IEEE Transactions on Power Systems :PWRS-2, No. 1, pp.175-182.,1987. DOI: https://doi.org/10.1109/TPWRS.1987.4335095

Deeb N, Shahidehpur S.M, Linear reactive power optimization in a large power network using the decomposition approach. IEEE Transactions on power system 1990: 5(2) : 428-435 DOI: https://doi.org/10.1109/59.54549

E. Hobson ,’Network cons rained reactive power control using linear programming, ‘ IEEE Transactions on power systems PAS -99 (4) ,pp 868=877, 1980 DOI: https://doi.org/10.1109/TPAS.1980.319715

K.Y Lee, Y.M Park, and J.L Oritz, “Fuel –cost optimization for both real and reactive power dispatches”, IEE Proc; 131C,(3), pp.85-93. DOI: https://doi.org/10.1049/ip-c.1984.0012

M.K. Mangoli, and K.Y. Lee, “Optimal real and reactive power control using linear programming”, Electr.Power Syst.Res, Vol.26, pp.1-10,1993. DOI: https://doi.org/10.1016/0378-7796(93)90063-K

C.A. Canizares, A.C.Z.de Souza and V.H. Quintana, “Comparison of performance indices for detection of proximity to voltage collapse,’’ vol. 11. no.3, pp.1441-1450, Aug 1996.

K.Anburaja, “Optimal power flow using refined genetic algorithm”, Electr.Power Compon.Syst, Vol. 30, 1055-1063,2002. DOI: https://doi.org/10.1080/15325000290085343

D. Devaraj, and B. Yeganarayana, “Genetic algorithm based optimal power flow for security enhancement”, IEE proc-Generation.Transmission and. Distribution; 152, 6 November 2005. DOI: https://doi.org/10.1049/ip-gtd:20045234

A.Berizzi, C. Bovo, M. Merlo, and M. Delfanti, “A ga approach tocompare orpf objective functions including secondary voltage regulation,”Electric Power Systems Research, vol. 84, no. 1, pp. 187 – 194, 2012. DOI: https://doi.org/10.1016/j.epsr.2011.11.014

C.-F. Yang, G. G. Lai, C.-H. Lee, C.-T. Su, and G. W. Chang, “Optimalsetting of reactive compensation devices with an improved voltagestability index for voltage stability enhancement,” International Journalof Electrical Power and Energy Systems, vol. 37, no. 1, pp. 50 – 57,2012. DOI: https://doi.org/10.1016/j.ijepes.2011.12.003

P. Roy, S. Ghoshal, and S. Thakur, “Optimal var control for improvementsin voltage profiles and for real power loss minimization usingbiogeography based optimization,” International Journal of ElectricalPower and Energy Systems, vol. 43, no. 1, pp. 830 – 838, 2012. DOI: https://doi.org/10.1016/j.ijepes.2012.05.032

B. Venkatesh, G. Sadasivam, and M. Khan, “A new optimal reactivepower scheduling method for loss minimization and voltage stabilitymargin maximization using successive multi-objective fuzzy lp technique,”IEEE Transactions on Power Systems, vol. 15, no. 2, pp. 844 –851, may 2000. DOI: https://doi.org/10.1109/59.867183

W. Yan, S. Lu, and D. Yu, “A novel optimal reactive power dispatchmethod based on an improved hybrid evolutionary programming technique,”IEEE Transactions on Power Systems, vol. 19, no. 2, pp. 913 –918, may 2004. DOI: https://doi.org/10.1109/TPWRS.2004.826716

W. Yan, F. Liu, C. Chung, and K. Wong, “A hybrid genetic algorithminteriorpoint method for optimal reactive power flow,” IEEE Transactionson Power Systems, vol. 21, no. 3, pp. 1163 –1169, aug. 2006.

J. Yu, W. Yan, W. Li, C. Chung, and K. Wong, “An unfixed piecewiseoptimalreactive power-flow model and its algorithm for ac-dc systems,”IEEE Transactions on Power Systems, vol. 23, no. 1, pp. 170 –176, feb.2008. DOI: https://doi.org/10.1109/TPWRS.2007.907387

F. Capitanescu, “Assessing reactive power reserves with respect tooperating constraints and voltage stability,” IEEE Transactions on PowerSystems, vol. 26, no. 4, pp. 2224–2234, nov. 2011.

Z. Hu, X. Wang, and G. Taylor, “Stochastic optimal reactive powerdispatch: Formulation and solution method,” International Journal ofElectrical Power and Energy Systems, vol. 32, no. 6, pp. 615 – 621,2010. DOI: https://doi.org/10.1016/j.ijepes.2009.11.018

A.Kargarian, M. Raoofat, and M. Mohammadi, “Probabilistic reactivepower procurement in hybrid electricity markets with uncertain loads,”Electric Power Systems Research, vol. 82, no. 1, pp. 68 – 80, 2012. DOI: https://doi.org/10.1016/j.epsr.2011.08.019

R.K.Ursem, ‘Diversity guided evolutionary algorithms’, in submission for the problem solving from nature conference, (PPSN 7)

Y.Fukuyama, ‘A Particle Swarm Optimization for Reactive Power and voltage control in Electric Power System’, IEEE Trans. on Power Systems, pp. 87 – 93, 2001.

Jakob S. Vesterstrom and Jacques Riget, “A Diversity-Guided Particle Swarm Optimizer the ARPSO”, EVALife Technical report no. 2002.

Y. Fukuyama, et al., “Practical Distribution State Estimation Using Hybrid Particle Swarm Optimization”,Proc. of IEEE Power Engineering Society Winter Meeting, Columbus, 2001.

R. C. Eberhart and Y. Shi, "Comparing Inertia Weights and Constriction Factors in Particle Swarm Optimization", Proc. of CEC 2000.

IEEE, “The IEEE 30-bus test system and the IEEE 118-test system”, (1993),

http://www.ee.washington.edu/trsearch/pstca/.

Jiangtao Cao, Fuli Wang and Ping Li, “An Improved Biogeography-based Optimization Algorithm for Optimal Reactive Power Flow”, International Journal of Control and Automation Vol.7, No.3 (2014), pp.161-176.

Downloads

Published

2017-11-30

How to Cite

Lenin, K. (2017). DRAG & AVERSION PARTICLE SWARM OPTIMIZATION ALGORITHM FOR REDUCTION OF REAL POWER LOSS. International Journal of Research -GRANTHAALAYAH, 5(11), 168–176. https://doi.org/10.29121/granthaalayah.v5.i11.2017.2344

Most read articles by the same author(s)

1 2 3 4 5 6 7 > >>