DECREASING ACTUAL POWER LOSS BY REFINED ABC ALGORITHM

Authors

  • Dr.K.Lenin Professor, Department of EEE Prasad V.Potluri Siddhartha Institute of Technology, Kanuru, Vijayawada, Andhra Pradesh -520007, India

DOI:

https://doi.org/10.29121/granthaalayah.v5.i10.2017.2269

Keywords:

Refined ABC Algorithm, Swarm Intelligence, Optimal Reactive Power, Transmission Loss

Abstract [English]

Refined ABC algorithm (RABC) proposed in this paper to solve the optimal reactive power problem. An artificial bee colony (ABC) algorithm is one of copious swarm intelligence algorithms that employ the foraging behavior of honeybee colonies. To progress the convergence performance and search speed of finding the best solution RABC algorithm has been developed. The main objective in this problem is to minimize the real power loss and also to keep the variables within the specified limits. Proposed Refined ABC (RABC) algorithm has been tested in standard IEEE 118 & practical 191 bus test systems and simulations results reveal about the better performance of the proposed Refined ABC algorithm (RABC) algorithm in reducing the real power loss and the voltage profiles within the limits.

Downloads

Download data is not yet available.

References

O.Alsac, and B. Scott, “Optimal load flow with steady state security”, IEEE Transaction. PAS -1973, pp. 745-751. DOI: https://doi.org/10.1109/TPAS.1974.293972

Lee K Y ,Paru Y M , Oritz J L –A united approach to optimal real and reactive power dispatch , IEEE Transactions on power Apparatus and systems 1985: PAS-104 : 1147-1153 DOI: https://doi.org/10.1109/TPAS.1985.323466

A.Monticelli , M .V.F Pereira ,and S. Granville , “Security constrained optimal power flow with post contingency corrective rescheduling” , IEEE Transactions on Power Systems :PWRS-2, No. 1, pp.175-182.,1987. DOI: https://doi.org/10.1109/TPWRS.1987.4335095

DeebN, Shahidehpur S.M, Linear reactive power optimization in a large power network using the decomposition approach. IEEE Transactions on power system 1990: 5(2) : 428-435 DOI: https://doi.org/10.1109/59.54549

E. Hobson ,’Network consrained reactive power control using linear programming, ‘ IEEE Transactions on power systems PAS -99 (4) ,pp 868=877, 1980 DOI: https://doi.org/10.1109/TPAS.1980.319715

K.Y Lee, Y.M Park, and J.L Oritz, “Fuel –cost optimization for both real and reactive power dispatches”, IEE Proc; 131C, (3), pp.85-93. DOI: https://doi.org/10.1049/ip-c.1984.0012

M.K. Mangoli, and K.Y. Lee, “Optimal real and reactive power control using linear programming”, Electric Power Syst.Res, Vol.26, pp.1-10, 1993. DOI: https://doi.org/10.1016/0378-7796(93)90063-K

C.A. Canizares, A.C.Z.de Souza and V.H. Quintana, “Comparison of performance indices for detection of proximity to voltage collapse,’’ vol. 11. no.3, pp.1441-1450, Aug 1996 .

S.R.Paranjothi, and K.Anburaja, “Optimal power flow using refined genetic algorithm”, Electr. Power Compon.Syst, Vol. 30, 1055-1063, 2002. DOI: https://doi.org/10.1080/15325000290085343

D. Devaraj, and B. Yeganarayana, “Genetic algorithm based optimal power flow for security enhancement”, IEE proc-Generation.Transmission and. Distribution; 152, 6 November 2005. DOI: https://doi.org/10.1049/ip-gtd:20045234

Berizzi, C. Bovo, M. Merlo, and M. Delfanti, “A ga approach to compare orpf objective functions including secondary voltage regulation,” Electric Power Systems Research, vol. 84, no. 1, pp. 187 – 194, 2012. DOI: https://doi.org/10.1016/j.epsr.2011.11.014

C.-F. Yang, G. G. Lai, C.-H. Lee, C.-T. Su, and G. W. Chang, “Optimal setting of reactive compensation devices with an improved voltage stability index for voltage stability enhancement,” International Journal of Electrical Power and Energy Systems, vol. 37, no. 1, pp. 50 – 57, 2012. DOI: https://doi.org/10.1016/j.ijepes.2011.12.003

P. Roy, S. Ghoshal, and S. Thakur, “Optimal var control for improvements in voltage profiles and for real power loss minimization using biogeography based optimization,” International Journal of Electrical Power and Energy Systems, vol. 43, no. 1, pp. 830 – 838, 2012. DOI: https://doi.org/10.1016/j.ijepes.2012.05.032

B. Venkatesh, G. Sadasivam, and M. Khan, “A new optimal reactive power scheduling method for loss minimization and voltage stability margin maximization using successive multi-objective fuzzy lp technique,” IEEE Transactions on Power Systems, vol. 15, no. 2, pp. 844 – 851, may 2000. DOI: https://doi.org/10.1109/59.867183

W. Yan, S. Lu, and D. Yu, “A novel optimal reactive power dispatch method based on an improved hybrid evolutionary programming technique,” IEEE Transactions on Power Systems, vol. 19, no. 2, pp. 913 – 918, may 2004. DOI: https://doi.org/10.1109/TPWRS.2004.826716

W. Yan, F. Liu, C. Chung, and K. Wong, “A hybrid genetic algorithminterior point method for optimal reactive power flow,” IEEE Transactions on Power Systems, vol. 21, no. 3, pp. 1163 –1169, aug. 2006.

J. Yu, W. Yan, W. Li, C. Chung, and K. Wong, “An unfixed piecewiseoptimal reactive power-flow model and its algorithm for ac-dc systems,” IEEE Transactions on Power Systems, vol. 23, no. 1, pp. 170 –176, feb. 2008. DOI: https://doi.org/10.1109/TPWRS.2007.907387

F. Capitanescu, “Assessing reactive power reserves with respect to operating constraints and voltage stability,” IEEE Transactions on Power Systems, vol. 26, no. 4, pp. 2224–2234, nov. 2011.

Z. Hu, X. Wang, and G. Taylor, “Stochastic optimal reactive power dispatch: Formulation and solution method,” International Journal of Electrical Power and Energy Systems, vol. 32, no. 6, pp. 615 – 621, 2010. DOI: https://doi.org/10.1016/j.ijepes.2009.11.018

Kargarian, M. Raoofat, and M. Mohammadi, “Probabilistic reactive power procurement in hybrid electricity markets with uncertain loads,” Electric Power Systems Research, vol. 82, no. 1, pp. 68 – 80, 2012. DOI: https://doi.org/10.1016/j.epsr.2011.08.019

D. Karaboga, “An idea based on honey bee swarm for numerical

Optimization,” Tech. Rep. TR06, Erciyes Univ. Press, Erciyes, 2005.

D. Karaboga and B. Basturk, “A powerful and efficient algorithm fornumerical function optimization: Artificial bee colony (ABC) algorithm,” Journal of Global Optimization, Vol. 39, No. 3, pp. 459-471, 2007. DOI: https://doi.org/10.1007/s10898-007-9149-x

D. Karaboga and B. Basturk, “On the performance of artificial beecolony (ABC) algorithm,” Applied Soft computing, Vol. 8, pp. 687-697, 2008. DOI: https://doi.org/10.1016/j.asoc.2007.05.007

D. Karaboga and B. Akay, “A comparative study of artificial Beecolony algorithm,” Applied Mathematics and Computation, Vol. 214, No. 1, pp. 108-132, 2009. DOI: https://doi.org/10.1016/j.amc.2009.03.090

D. Whitley, “A genetic Algorithm tutorial,” Statistics and Computing, Vol. 4, pp. 65-85, 1994. DOI: https://doi.org/10.1007/BF00175354

D. Karaboga and B. Akay, “artificial bee colony (abc) algorithm ontraining artificial neural networks 15th IEEE Signal Processing andCommunications Applications, pp.1-4, 2007. DOI: https://doi.org/10.1109/SIU.2007.4298679

S. K. Udgata, S. L. Sabat and S. Mini, “Sensor deployment in irregularterrain using artificial bee colony algorithm,” IEEE Congress on Nature& Biologically Inspired Computing, pp. 1309-1314, 2009.

B. Akay and D. Karaboga, “Artificial bee colony algorithm for largescaleproblems and engineering design optimization,” Journal ofIntelligent Manufacturing, Vol. 23, No. 4, pp. 1001-1014, 2010.

B. Alatas, “Chaotic bee colony algorithm for global numericaloptimization,” Expert Systems with Applications, Vol. 37, pp. 5682-5687, 2010.

G. Zhu and S. Kwong, “Gbest-guided artificial bee colony algorithm fornumerical function optimization,” Applied Mathematics andComputation , Vol. 217, pp. 3166-3173, 2010.

Banharnsakun, T. Achalakul and B. Sirinaovakul, “The best-so-farselection in artificial bee colony algorithm,” Applied Soft Computing,Vol. 11, No. 2, pp. 2888-2901, 2011.

D. Karaboga and B. Gorkemli, “A combinatorial artificial bee colonyalgorithm for traveling salesman problem,” International Symposium onInnovation in Intelligent Systems and Applications (INISTA) , pp. 50-53, 2011. DOI: https://doi.org/10.1109/INISTA.2011.5946125

W. GAO and S. Liu, “A modified artificial bee colony algorithm, “Computers & Operations Research, Vol. 39. pp. 687-697, 2012. DOI: https://doi.org/10.1016/j.cor.2011.06.007

D. Swagatam and P. N. Suganthan, “Differential evolution: a survey ofthe state-of-the-art,” IEEE Trans. Evolutionary Computation, Vol. 15, No. 1, 2011. DOI: https://doi.org/10.1109/TEVC.2010.2059031

K. Qin and X. Li, “Differential evolution on the CEC-2013 singleobjectivecontinuous optimization testbed,” Proc. of IEEE Congress onEvolutionary Computation, Cancun, Mexico, pp. 1099-1106, 2013.

C. Stephen, M. James and B. R. Antonio, “Standard Particle SwarmOptimization on the CEC2013 Real-Parameter OptimizationBenchmark Functions,” Tech. Rep., School of Information Technology,York University, 2013.

IEEE, “The IEEE 30-bus test system and the IEEE 118-test system”, (1993), http://www.ee.washington.edu/trsearch/pstca/.

Jiangtao Cao, Fuli Wang and Ping Li, “An Improved Biogeography-based Optimization Algorithm for Optimal Reactive Power Flow”, International Journal of Control and Automation Vol.7, No.3 (2014), pp.161-176.

Downloads

Published

2017-10-31

How to Cite

Lenin, K. (2017). DECREASING ACTUAL POWER LOSS BY REFINED ABC ALGORITHM. International Journal of Research -GRANTHAALAYAH, 5(10), 63–71. https://doi.org/10.29121/granthaalayah.v5.i10.2017.2269

Most read articles by the same author(s)

<< < 1 2 3 4 5 6 7 > >>