REDUCTION OF REAL POWER LOSS BY LAVA HERON OPTIMIZATION ALGORITHM
DOI:
https://doi.org/10.29121/granthaalayah.v5.i8.2017.2187Keywords:
Lava Heron Optimization, Swarm Intelligence, Optimal Reactive Power, Transmission LossAbstract [English]
This paper presents a new Lava Heron Optimization (LHO) Algorithm for solving reactive power problem. This algorithm is inspired by the grab skill of the Lava Heron bird. Lava heron bird live in on the freshwater or saline water, swampy marshes or wetlands with tuft of trees mostly in low lying areas, where there are abundant convenience of fishes as their prey. By using the prey catching skill of the Lava Heron bird algorithm has been framed and utilized to minimize the real power loss. Proposed Lava Heron Optimization (LHO) Algorithm has been tested in standard IEEE 57,118 bus systems and simulation results demonstrate the commendable performance of the projected Lava Heron Optimization (LHO) Algorithm in reducing the real power loss.
Downloads
References
O.Alsac,and B. Scott, “Optimal load flow with steady state security”, IEEE Transaction. PAS -1973, pp. 745-751. DOI: https://doi.org/10.1109/TPAS.1974.293972
Lee K Y ,Paru Y M , Oritz J L –A united approach to optimal real and reactive power dispatch , IEEE Transactions on power Apparatus and systems 1985: PAS-104 : 1147-1153 DOI: https://doi.org/10.1109/TPAS.1985.323466
A.Monticelli , M .V.F Pereira ,and S. Granville , “Security constrained optimal power flow with post contingency corrective rescheduling” , IEEE Transactions on Power Systems :PWRS-2, No. 1, pp.175-182.,1987. DOI: https://doi.org/10.1109/TPWRS.1987.4335095
Deeb N, Shahidehpur S.M, Linear reactive power optimization in a large power network using the decomposition approach. IEEE Transactions on power system 1990: 5(2) : 428-435 DOI: https://doi.org/10.1109/59.54549
E. Hobson ,’Network consrained reactive power control using linear programming, ‘ IEEE Transactions on power systems PAS -99 (4) ,pp 868-877, 1980 DOI: https://doi.org/10.1109/TPAS.1980.319715
K.Y Lee , Y.M Park , and J.L Oritz, “Fuel –cost optimization for both real and reactive power dispatches” , IEE Proc; 131C,(3), pp.85-93. DOI: https://doi.org/10.1049/ip-c.1984.0012
M.K. Mangoli, and K.Y. Lee, “Optimal real and reactive power control using linear programming” , Electr.Power Syst.Res, Vol.26, pp.1-10,1993. DOI: https://doi.org/10.1016/0378-7796(93)90063-K
Kennedy, J., Eberhart, R.:”Particle swarm optimization”, IEEE International Conference on Neural Networks 4, 1942–1948 (1995)
Dasgupta, D. (ed.): “Artificial immune systems and their application”, Springer, Heidelberg (1998)
Dorigo, M., Stützle, T.: Ant colony optimization. A Bradford Book. The MIT Press, Cambridge (2004) DOI: https://doi.org/10.7551/mitpress/1290.001.0001
Baykasoglu, A., Ozbakir, L., Tapkan, P.: “Artificial bee colony algorithm and its application to generalized assignment problem”, In: Chan, F.T.S., Tiwari, M.K. (eds.) Swarm Intelligence, Focus on Ant and Particle Swarm Optimization, pp. 113–144. I-Tech Education and Publishing (2007) DOI: https://doi.org/10.5772/5101
Karaboga, D., Basturk, B.: “On the performance of artificial bee colony (ABC) algorithm”, Appl. Soft Comput. 8, 687–697 (2008) DOI: https://doi.org/10.1016/j.asoc.2007.05.007
Yang, X.S.: “Engineering optimizations via nature-inspired virtual bee algorithms”, In: Mira, J., Álvarez, J.R. (eds.) IWINAC 2005. LNCS, vol. 3562, pp. 317–323. Springer, Heidelberg (2005) DOI: https://doi.org/10.1007/11499305_33
Teodorovic, D., Dell’Orco, M.: Bee colony optimization – “A cooperative learning approach to complex transportation problems”, Advanced OR and AI Methods in Transportation. In: Proceedings of the 16th Mini - EURO Conference and 10th Meeting of EWGT, pp. 51–60 (2005)
Wedde, H.F., Farooq, M., Zhang, Y.: BeeHive: “An efficient fault-tolerant routing algorithm inspired by honey bee behavior”, In: Dorigo, M., Birattari, M., Blum, C., Gambardella, L.M., Mondada, F., Stützle, T. (eds.) ANTS 2004. LNCS, vol. 3172, pp. 83–94. Springer, Heidelberg (2004) DOI: https://doi.org/10.1007/978-3-540-28646-2_8
Drias, H., Sadeg, S., Yahi, S.: “Cooperative bees swarm for solving the maximum weighted satisfiability problem”, In: Cabestany, J., Prieto, A.G., Sandoval, F. (eds.) IWANN 2005. LNCS, vol. 3512, pp. 318–325. Springer, Heidelberg (2005) DOI: https://doi.org/10.1007/11494669_39
Pham, D.T., Ghanbarzadeh, A., Koc, E., Otri, S., Rahim, S., Zaidi, M.: “The bees algorithm - A novel tool for complex optimization problems”, In: IPROMS 2006 Proceeding 2nd International Virtual Conference on Intelligent Production Machines and Systems, Oxford. Elsevier, Amsterdam (2006).
C. Sur, A. Shukla, “Dealing QAP & KSP with Green Heron Optimization Algorithm - A New Bio-Inspired Meta-heuristic”, 4th International Conference on Computing, Communication and Networking Technologies (ICCCNT 2013), 4-6 July 2013, Tiruchengode, Tamil Nadu, India. DOI: https://doi.org/10.1109/ICCCNT.2013.6726799
Chaohua Dai, Weirong Chen, Yunfang Zhu, and Xuexia Zhang, “Seeker optimization algorithm for optimal reactive power dispatch,” IEEE Trans. Power Systems, Vol. 24, No. 3, August 2009, pp. 1218-1231. DOI: https://doi.org/10.1109/TPWRS.2009.2021226
J. R. Gomes and 0. R. Saavedra, “Optimal reactive power dispatch using evolutionary computation: Extended algorithms,” IEE Proc.-Gener. Transm. Distrib.. Vol. 146, No. 6. Nov. 1999. DOI: https://doi.org/10.1049/ip-gtd:19990683
IEEE, “The IEEE 30-bus test system and the IEEE 118-test system”, (1993), http://www.ee.washington.edu/trsearch/pstca/.
Jiangtao Cao, Fuli Wang and Ping Li, “An Improved Biogeography-based Optimization Algorithm for Optimal Reactive Power Flow” International Journal of Control and Automation Vol.7, No.3 (2014), pp.161-176.
Downloads
Published
How to Cite
Issue
Section
License
With the licence CC-BY, authors retain the copyright, allowing anyone to download, reuse, re-print, modify, distribute, and/or copy their contribution. The work must be properly attributed to its author.
It is not necessary to ask for further permission from the author or journal board.
This journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge.