REDUCTION OF REAL POWER LOSS BY LAVA HERON OPTIMIZATION ALGORITHM

Authors

  • Dr.K.Lenin Professor, Department of EEE, Prasad V.Potluri Siddhartha Institute of Technology, Kanuru, Vijayawada, Andhra Pradesh -520007, India

DOI:

https://doi.org/10.29121/granthaalayah.v5.i8.2017.2187

Keywords:

Lava Heron Optimization, Swarm Intelligence, Optimal Reactive Power, Transmission Loss

Abstract [English]

This paper presents a new Lava Heron Optimization (LHO) Algorithm for solving reactive power problem. This algorithm is inspired by the grab skill of the Lava Heron bird. Lava heron bird live in on the freshwater or saline water, swampy marshes or wetlands with tuft of trees mostly in low lying areas, where there are abundant convenience of fishes as their prey. By using the prey catching skill of the Lava Heron bird algorithm has been framed and utilized to minimize the real power loss. Proposed Lava Heron Optimization (LHO) Algorithm has been tested in standard IEEE 57,118 bus systems and simulation results demonstrate the commendable performance of the projected Lava Heron Optimization (LHO) Algorithm in reducing the real power loss.

Downloads

Download data is not yet available.

References

O.Alsac,and B. Scott, “Optimal load flow with steady state security”, IEEE Transaction. PAS -1973, pp. 745-751. DOI: https://doi.org/10.1109/TPAS.1974.293972

Lee K Y ,Paru Y M , Oritz J L –A united approach to optimal real and reactive power dispatch , IEEE Transactions on power Apparatus and systems 1985: PAS-104 : 1147-1153 DOI: https://doi.org/10.1109/TPAS.1985.323466

A.Monticelli , M .V.F Pereira ,and S. Granville , “Security constrained optimal power flow with post contingency corrective rescheduling” , IEEE Transactions on Power Systems :PWRS-2, No. 1, pp.175-182.,1987. DOI: https://doi.org/10.1109/TPWRS.1987.4335095

Deeb N, Shahidehpur S.M, Linear reactive power optimization in a large power network using the decomposition approach. IEEE Transactions on power system 1990: 5(2) : 428-435 DOI: https://doi.org/10.1109/59.54549

E. Hobson ,’Network consrained reactive power control using linear programming, ‘ IEEE Transactions on power systems PAS -99 (4) ,pp 868-877, 1980 DOI: https://doi.org/10.1109/TPAS.1980.319715

K.Y Lee , Y.M Park , and J.L Oritz, “Fuel –cost optimization for both real and reactive power dispatches” , IEE Proc; 131C,(3), pp.85-93. DOI: https://doi.org/10.1049/ip-c.1984.0012

M.K. Mangoli, and K.Y. Lee, “Optimal real and reactive power control using linear programming” , Electr.Power Syst.Res, Vol.26, pp.1-10,1993. DOI: https://doi.org/10.1016/0378-7796(93)90063-K

Kennedy, J., Eberhart, R.:”Particle swarm optimization”, IEEE International Conference on Neural Networks 4, 1942–1948 (1995)

Dasgupta, D. (ed.): “Artificial immune systems and their application”, Springer, Heidelberg (1998)

Dorigo, M., Stützle, T.: Ant colony optimization. A Bradford Book. The MIT Press, Cambridge (2004) DOI: https://doi.org/10.7551/mitpress/1290.001.0001

Baykasoglu, A., Ozbakir, L., Tapkan, P.: “Artificial bee colony algorithm and its application to generalized assignment problem”, In: Chan, F.T.S., Tiwari, M.K. (eds.) Swarm Intelligence, Focus on Ant and Particle Swarm Optimization, pp. 113–144. I-Tech Education and Publishing (2007) DOI: https://doi.org/10.5772/5101

Karaboga, D., Basturk, B.: “On the performance of artificial bee colony (ABC) algorithm”, Appl. Soft Comput. 8, 687–697 (2008) DOI: https://doi.org/10.1016/j.asoc.2007.05.007

Yang, X.S.: “Engineering optimizations via nature-inspired virtual bee algorithms”, In: Mira, J., Álvarez, J.R. (eds.) IWINAC 2005. LNCS, vol. 3562, pp. 317–323. Springer, Heidelberg (2005) DOI: https://doi.org/10.1007/11499305_33

Teodorovic, D., Dell’Orco, M.: Bee colony optimization – “A cooperative learning approach to complex transportation problems”, Advanced OR and AI Methods in Transportation. In: Proceedings of the 16th Mini - EURO Conference and 10th Meeting of EWGT, pp. 51–60 (2005)

Wedde, H.F., Farooq, M., Zhang, Y.: BeeHive: “An efficient fault-tolerant routing algorithm inspired by honey bee behavior”, In: Dorigo, M., Birattari, M., Blum, C., Gambardella, L.M., Mondada, F., Stützle, T. (eds.) ANTS 2004. LNCS, vol. 3172, pp. 83–94. Springer, Heidelberg (2004) DOI: https://doi.org/10.1007/978-3-540-28646-2_8

Drias, H., Sadeg, S., Yahi, S.: “Cooperative bees swarm for solving the maximum weighted satisfiability problem”, In: Cabestany, J., Prieto, A.G., Sandoval, F. (eds.) IWANN 2005. LNCS, vol. 3512, pp. 318–325. Springer, Heidelberg (2005) DOI: https://doi.org/10.1007/11494669_39

Pham, D.T., Ghanbarzadeh, A., Koc, E., Otri, S., Rahim, S., Zaidi, M.: “The bees algorithm - A novel tool for complex optimization problems”, In: IPROMS 2006 Proceeding 2nd International Virtual Conference on Intelligent Production Machines and Systems, Oxford. Elsevier, Amsterdam (2006).

C. Sur, A. Shukla, “Dealing QAP & KSP with Green Heron Optimization Algorithm - A New Bio-Inspired Meta-heuristic”, 4th International Conference on Computing, Communication and Networking Technologies (ICCCNT 2013), 4-6 July 2013, Tiruchengode, Tamil Nadu, India. DOI: https://doi.org/10.1109/ICCCNT.2013.6726799

Chaohua Dai, Weirong Chen, Yunfang Zhu, and Xuexia Zhang, “Seeker optimization algorithm for optimal reactive power dispatch,” IEEE Trans. Power Systems, Vol. 24, No. 3, August 2009, pp. 1218-1231. DOI: https://doi.org/10.1109/TPWRS.2009.2021226

J. R. Gomes and 0. R. Saavedra, “Optimal reactive power dispatch using evolutionary computation: Extended algorithms,” IEE Proc.-Gener. Transm. Distrib.. Vol. 146, No. 6. Nov. 1999. DOI: https://doi.org/10.1049/ip-gtd:19990683

IEEE, “The IEEE 30-bus test system and the IEEE 118-test system”, (1993), http://www.ee.washington.edu/trsearch/pstca/.

Jiangtao Cao, Fuli Wang and Ping Li, “An Improved Biogeography-based Optimization Algorithm for Optimal Reactive Power Flow” International Journal of Control and Automation Vol.7, No.3 (2014), pp.161-176.

Downloads

Published

2017-08-31

How to Cite

Lenin, K. (2017). REDUCTION OF REAL POWER LOSS BY LAVA HERON OPTIMIZATION ALGORITHM. International Journal of Research -GRANTHAALAYAH, 5(8), 85–93. https://doi.org/10.29121/granthaalayah.v5.i8.2017.2187

Most read articles by the same author(s)

1 2 3 4 5 6 7 > >>