TRANSPORT AND FATE OF SELECTED HEAVY METALS IN CIRCUM-NEUTRAL RIVER ENVIRONMENT: A CASE STUDY OF THE RIVER NENT CUMBRIA, ENGLAND

Authors

  • K.U. Emerson Civil Engineering and Geosciences, Newcastle University, United Kingdom
  • E.S.Bejor Department of Civil Engineering, Cross River University of Technology, Calabar, Nigeria
  • E.E.Ekeng Department of Civil Engineering, Cross River University of Technology, Calabar, Nigeria
  • N.M. Ogarekpe Department of Civil Engineering, Cross River University of Technology, Calabar, Nigeria
  • A.U.Onuruka Department of Bioenvironmental Engineering, Imo State Polytechnic, Ohaji.Owerri, Nigeria

DOI:

https://doi.org/10.29121/granthaalayah.v5.i6.2017.2010

Keywords:

Diffuse Sources, Spoil Waste, Heavy Metals, Leaching Test, Circum-Neutral, River Nent

Abstract [English]

The research investigates the transport and fate of heavy metal entrenchment into the River Nent from abandoned spoil waste at the former mine site. The River Nent is found to maintain a circum-neutral pH and contains high concentrations of dissolved zinc (Zn) and lead (Pb) of 0.70mg/l and 0.08mg/l respectively at flow rate of 34.5l/s. Relative concentration of sulphate and carbonate ions is observed to influence the river pH. This condition has a marked effect on the concentrations of Zn and an insignificant effect on Pb, copper (Cu), cadmium (Cd) and nickel (Ni). A leaching experiment shows that loosely-bound Zn minerals in spoil waste, when entrained into the river, quickly go into solution causing a sudden rise in dissolved Zn concentration. However, some of the dissolved Zn will precipitate further downstream as  carbonate, thereby lowering the amount of dissolved zinc in the water column. A similar leaching test also indicates that under acidic condition of ~ pH 5, concentrations of dissolved SZn and Pb in solution will continue to increase with zinc being about 3 times higher than Pb. If pH is maintained for a long time, the concentrations of both metals continue to rise, except enough carbonate is dissolved.  This condition was observed not to affect the dissolution of Pb minerals.

Downloads

Download data is not yet available.

References

CAMPBELL, P.G.C., 1995. Interactions between trace metals and aquatic organisms: a critique of the free-ion activity model., In: TESSIER, A., TURNER, D.R. (eds) Metal Speciation and Bioavailability in Aquatic System, Wiley, Chichester.

COULTHARD, T. J. &MACKLIN, M. G., 2003. Modeling long-term contamination in river systems from historical metal mining., Geology, 31, 451-454. DOI: https://doi.org/10.1130/0091-7613(2003)031<0451:MLCIRS>2.0.CO;2

DAI, Z. & WANG, Z., 1992. Model for sulfide weathering in pyritic wastestone., J. Environ Sci.(China), 4(3), 29-35.

DE HAAN, F.A.M., VAN RIEMSDIJK, W.H. & VAN DER ZEE, S.E.A.T.M., 1993. General concepts of soil quality., In: EIJSACKERS, H.G.P., HAMERS, T. (eds.), Integrated Soil and Sediment Research: A Basis for Proper Protection. Kluwer Academic., Dordrecht, 155–170. DOI: https://doi.org/10.1007/978-94-011-2008-1_40

DI TORO, D. M. , MAHONY, J. D., Hansen, D. J., Scott, K. J., Hicks, M. B. & Mayr, S. M., 1990. Toxicity of cadmium in sediments: the role of acid volatile sulfide. Environ Toxicol Chem., 9, 1487-1502. DOI: https://doi.org/10.1002/etc.5620091208

ENVIRONMENT CANADA, 1998. Canadian sediment quality guidelines for lead. Supporting document. Environmental Conservation Service, Ecosystem Science Directorate, Science Policy and Environmental Quality Branch, Guidelines and Standards Division, Ottawa.

FALKNER K. K., KLINKHAMMER, G. P., UNGERER, C. A., &CHRISTIE, D. M., 1995. Inductively Coupled Plasma Mass Spectrometry in Geochemistry. Ann. Rev. Earth Planet. Sci., 23, 409-49. DOI: https://doi.org/10.1146/annurev.ea.23.050195.002205

FÖRSTNER, U. & WITTMANN, G.T.W., 1983. Metal pollution in the aquatic environment, Springer-Verlag, Berlin.

GUÉGUEN, C., GILBIN, R., PARDOS, M., &DOMINIK, J., 2004. Water toxicity and metal contamination assessment of a polluted river: the Upper Vistula River (Poland)., Applied Geochemistry, 19, 153-162. DOI: https://doi.org/10.1016/S0883-2927(03)00110-0

HE, M., WANG, Z. & TANG H., 2001. Modeling the ecological impact of heavy metals on aquatic ecosystems: a framework for the development of an ecological model., The Science of the Total Environment, 266, 291-298. DOI: https://doi.org/10.1016/S0048-9697(00)00733-6

JOHNSON, M. S., COOKE, J. A. &STEVENSON, J. K. W., 1994. Revegetation of metalliferous wastes and land after metal mining., In: HESTER, R. E. & HARRISON, R. M. (eds) Mining and Its Environmental Impact. Issues in Environmental Science and Technology, The Royal Society of Chemistry, Letchworth.

LAPAKKO, K., 2002. Metal mine rock and waste characterization tools: an overview. Minesota Department of Natural Resources, US. [Online]. Available at: http://pubs.iied.org/pdfs/G00559.pdf

LESTER, J. N. &BIRKETT, J. W., 1999. Microbiology and chemistry for environmental scientists and engineers. (2nd edition). E &FN Spon, London.

LIN, Y., LI, Q., ZHOU, G. & SHI S., 1992. Impacts of acid mine drainage on water quality of Le An River., J. Environ Sci. (China), 4, 91-99.

MARTINEZ, C. E. &MOTTO, H. L., 1999. Solubility of lead, zinc and copper added to mineral soils., Environmental Pollution, 107(1), 153-158. DOI: https://doi.org/10.1016/S0269-7491(99)00111-6

NUTTALL, C. A. &YOUNGER, P. L., 1999.Reconnaisance hydrogeological evaluation of an abandoned Pb-Zn orefield, Nent Valley, Cumbria, UK., Proceedings of the Yorkshire Geological Society, 52(4), 395-405. DOI: https://doi.org/10.1144/pygs.52.4.395

OʹCONNER, J. T., RENN, C. E. & WINTNER, I., 1964. Zinc concentrations in rivers of the Chesapeake Bay region., American Water Works Association, 56 (3), 280-286. DOI: https://doi.org/10.1002/j.1551-8833.1964.tb01209.x

REDDY, K. J., GLOSS, S. P. &WANG, L., 1995. Solubility and mobility of copper, zinc and lead in acidic environments., Plant and Soil, 171, 53-58. DOI: https://doi.org/10.1007/BF00009564

SII NANOTECHNOLOGY INC., 2011. Description of ICP Optical Emission Spectrometry (ICP-OES). [Online]. Available at:

http://www.siint.com/en/products/icp/tec_descriptions/descriptions1_e.html

SIMÓN, M., DORRONSORO, C., ORTIZ, I.,MARTÍN, F. &AGUILAR, J., 2011. Pollution of carbonate soils in a Mediterranean climate due to a tailings spill., Departamento de Edafología y Quimica Agrícola, Facultad de Ciencias, Universidad de Granada, 18002 Granada, Spain.

SMITH, K. S., 1999. Metal sorption on mineral surfaces: An overview with examples relating to mineral deposits.

STUMM, W. &MORGAN, J. J., 1996. Aquatic chemistry. (3rd edition), John Wiley & Sons, Inc., New York.

WHO, 2001. WORLD HEALTH ORGANISATION. Water, Sanitation and Health (WSH). [Online] Available at: http://www.who.int/water_sanitation_health/diseases/lead/en/

YOUNGER, P. L. & WOLKERSDORFER, C. (eds.), 2004. Mining Impacts on the Fresh Water Environment: Technical and Managerial Guidelines for Catchment Scale Management., Mine Water and the Environment, 23, S2-S80. DOI: https://doi.org/10.1007/s10230-004-0028-0

YOUNGER, P. L., BANWART, S. A. &HEDIN, R. S., 2002. Mine water hydrology, pollution, remediation. Kluwer, Academic Publishers, London. DOI: https://doi.org/10.1007/978-94-010-0610-1

Downloads

Published

2017-06-30

How to Cite

Emerson, K., Bejor, E., Ekeng, E., Ogarekpe, N., & Onuruka, A. (2017). TRANSPORT AND FATE OF SELECTED HEAVY METALS IN CIRCUM-NEUTRAL RIVER ENVIRONMENT: A CASE STUDY OF THE RIVER NENT CUMBRIA, ENGLAND. International Journal of Research -GRANTHAALAYAH, 5(6), 159–169. https://doi.org/10.29121/granthaalayah.v5.i6.2017.2010